GLOBAL ANTIVIRAL JOURNAL

HEP DART 2005
frontiers in drug development for viral hepatitis

December 11-15, 2005
The Fairmont Orchid
Kohala Coast, Big Island, Hawaii

Final Program and Abstract Book

The program is sponsored by Northwestern University's Feinberg School of Medicine

NORTHWESTERN UNIVERSITY

Volume 1, Supplement 2
activity of these inhibitors with the variation of their respective NS5B binding sites through an array of studies that combine biochemistry, biophysics and computational simulation. The present studies provide insights into the rational drug design of inhibitors that can be accommodated into highly variable binding sites.

ABSTRACT 037

Identification and Optimization of a Novel Class of Non-nucleoside Inhibitors of HCV NS5B RNA Polymerase

Pfizer Global Research & Development, LA Jolla, California, USA

BACKGROUND: The HCV NS5B polymerase is essential for HCV infectivity and is a major focus of antiviral drug discovery efforts. We have previously identified a novel, dihydropryone-containing inhibitor using high throughput screening against NS5B genotype 1b polymerase (IC_{50} = 1.0 μM) [J Virol 2003 77(13) 7575-81]. A co-crystal structure revealed the inhibitor bound to the 'thumb' site of the polymerase, approximately 30 Å removed from the active site.

METHODS: To improve the potency of this inhibitor, SAR studies were performed exploring 3 key binding pockets (designated A, B and C) of NS5B BK1b, utilizing structure-based design, parallel synthesis and traditional medicinal chemistry. Other sets of analogs were prepared to define the dihydropryone pharmacophore.

RESULTS: It was found that the cyclopyrrol ring was critical for activity, tightly filling the hydrophobic 'A' pocket. The para phenol in the 'B' pocket could be removed and a combination of meta-halogens and para phenol ethers improved enzyme and antiviral potency. Although sulfur linked aromatic fragments in the 'C' pocket improved enzyme potency, the analog with the most potent antiviral activity incorporated a carbon linker; this modification resulted in a ~10-fold increase in antiviral potency.

CONCLUSION: A synergistic approach utilizing structure-based design, parallel synthesis and traditional medicinal chemistry afforded > 400-fold improvement in potency against the enzyme and > 400-fold improvement in the antiviral 1b replicon assay.

ABSTRACT 038

Novel Aryl Diketo Acids (ADKs) as Inhibitors of Hepatitis C Virus NS5b RNA-dependent RNA-polymerase: Better Understanding through Molecular Modeling

S Prici1, M Fermeglia1, M Forraro1, MS Paneni1, P Cosotti1, R Costi1, A Roux1, M Artico1 and R Di Santo2

1 Molecular Simulation Engineering (MOSE), Laboratory, Department of Chemical Engineering, University of Trieste, Italy; 2Istituto Pasteur Fondazione Cenci Bolognetti - Department of Pharmaceutical Studies, University of Rome "La Sapienza", Italy

BACKGROUND: Structure-based drug design refers to the intricate process of using the information contained in the 3D structure of a macromolecular target and of related ligand-target complexes to design novel drugs for important diseases. Computational methods are required to extract all of the relevant information from the available structures and to use it in an efficient and intelligent manner to design improved ligands for the target. Currently, there are intense efforts toward the development of new drugs targeting essential HCV enzymes, and in particular the RNA-dependent RNA-polymerase (NS5b), responsible for the replication of the viral genome. Under these perspectives, in this work we used molecular modeling methods to derive QSARs for diketo acid analogues to carry out design of new, potent anti HCV-agents using computer models of the receptors, and in silico screening and scoring of the drug candidates.

METHODS: A molecular modeling strategy using aryl diketo acid (ADK) derivatives recently reported in literature as HCV polymerase inhibitors was designed.
A 3D chemical feature-based pharmacophore model was developed, consisting of two hydrogen bond acceptors, one negative ionizable moiety, and two hydrophobic aromatics. This model was used to predict the anti-RNA-dependent RNA polymerase (RdRp) activity of a series of ADK derivatives previously synthesized in our laboratories as HIV-1 integrase inhibitors. Furthermore, experimental IC$_{50}$ of 9 compounds, tested _in vitro_ against recombinant HCV polymerase, were compared with the corresponding values predicted using the 3D pharmacophore model. Finally, we determined the three-dimensional structure of a small subset of the most promising proposed compounds bound to the target, and calculated the free energy of interaction using a molecular dynamics-based, continuum solvent method (MM/PBSA).

RESULTS: In this work we built 3D pharmacophore hypotheses from a training set of 40 diketo acids active as inhibitors of the HCV RNA-dependent RNA-polymerase. We verified that the more active compounds map well onto all features of the best hypothesis Hyp1. Taken together, two hydrogen bond acceptors, a negative ionizable group, and two hydrophobic aromatics located on the molecules seem to be essential for high activity in inhibition of HCV RNA-dependent RNA-polymerase. The same hypothesis has been applied to the prediction of the activity of recently synthesized diketo acid derivatives. For those compounds for which the activity was obtained concomitantly, the results obtained were both qualitatively and quantitatively in good agreement. The binding modes and affinities of the most promising set of compounds have also been predicted using an ansatz that combines MM/PBSA and normal mode calculations. Given the quality of the results achieved, the combination of 3D pharmacophore modeling and detailed atomistic MD simulations can be considered the most promising tool in designing new leads for hopefully more active compounds, and work is in progress in this respect.

ABSTRACT 039

Non-nucleoside Anti-Flaviviridae Agents from Different Molecular Classes: A Joint Experimental/Modeling Effort

A Angusti2, L Azzas1, V Boido1, C Canu1, A Carra1, N Ciliberti2, M Ferrone1, R Lodd1, P La Colla1, M Loriga1, S Manfredini1, M Mazzei1, E Nieddu1, G Paglietti1, MS Paneni1, S Prati1, G Rassu1, F Sgaraglia1, B Tasso1 and G Vitali2

1Department of Pharmaceutical Sciences, University of Ferrara, Italy; 2Biotechnology Research Institute (NRC), Montreal, Canada; 3Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy; 4Department of Pharmaceutical Sciences, University of Genoa, Italy; 5Department of Medicinal and Toxicological Chemistry, University of Sassari, Italy; 6Molecular Simulation Engineering (MOSE) Laboratory, Department of Chemical Engineering, University of Trieste, Italy; 7Department of Biomedical Sciences and Technologies, University of Cagliari, Italy

BACKGROUND: *Flaviviridae* are enveloped, positive single-stranded RNA viruses. This virus family contains three genera: *Hepacivirus*, *Flavivirus*, and *Pestivirus*. Currently, more than 70 *Flaviviruses* have been discovered, and many of them cause important human diseases. HCV has infected an estimated 1-3% of the world population, which means that more than 170 million chronic carriers are at risk of developing cirrhosis and/or liver cancer. Although an efficient vaccine exists against YFV, this virus is still a leading cause of hemorrhagic fever and related mortality worldwide. Another *Flavivirus*, DENV, is currently threatening up to 2.5 billion people, and is still emerging throughout the world. Thus, there is an urgent need for more (cost-)effective treatments and/or immunoprophylaxis for these viral diseases. Accordingly, the Italian FIRB group of researchers has spent intense, jointed efforts in the discovery of compounds that inhibit the replication of *Flaviviridae* in general, with the hope that they will result in the discovery of selective HCV inhibitors.

METHODS: In this work we present the combined results obtained from the synthesis, biological studies, and _in silico_ screening and modeling of the following classes of compounds:
- Mannich bases of 7-hydroxycoumarins;
- hindered nucleoside analogs;

HEP DART 2005 - Frontiers in Drug Development for Viral Hepatitis