Synthesis, antifungal and antimycobacterial activities of new bis-imidazole derivatives.

Daniele Zampieri, Maria Grazia Mamolo, Luciano Vio, Elena Tonzar – Sabrina Pricl, Marco Ferrone - Giuditta Scialino, Elena Banfi

*Department of Pharmaceutical Sciences, Piazzale Europa 1, 34127 Trieste bDepartment of Chemical, Enviromental and Raw Materials Engineering – Piazzale Europa 1, 34127 Trieste cDepartment. of Biomedical Sciences (Microbiology Sect.) Via Fleming 22, 34100 Trieste. Presenting author: dzampieri@units.it

Considering the increased incidence of severe opportunistic fungal infections in immunocompromised patients together with the development of resistance among pathogenic *Candida* spp., there is a great need for new antifungal compounds.

On the other hand, the increase of tuberculosis due to emergence of multidrug-resistant strains (MDR) of *Mycobacterium tuberculosis*, together with the increased incidence of severe disseminated infections produced by mycobacteria other than tuberculosis (MOTT) in immunocompromised patients, have prompted the search for new antimycobacterial drugs.

Because many imidazole derivatives showed potent antifungal activity associated with good antimycobacterial activity, we synthesized a series of compounds 1a-m characterized by the simultaneous presence of two imidazole rings linked togheter by a propane bridge connected with a variously substituted aromatic ring with the aim of modulate the lipophilic character of the corresponding molecules in consideration of the importance of this parameter for the activity.

![Chemical structures of compounds 1a-m and 1l-m](image)

The synthesized compounds reached MIC90 values of 8 µg/ml against *Mycobacterium tuberculosis* H37Rv strain and 2-4 µg/ml against *Candida albicans* and *Candida glabrata* strains.

Further, we performed a molecular modeling study in order to rationalize the possible interactions between the synthesized compounds and the active site of the target enzyme, cytochrome P450-dependent lanosterol 14α-demethylase, and we quantified these interactions by comparing the calculated binding free energy values of compounds to their experimental MIC values.