
DIBLOCK COPOLYMERS FOR THE AUTOMOTIVE INDUSTRY: THE MESOSCOPIC 
APPROACH 
 
 
 
Alessandro COSLANICH, Maurizio FERMEGLIA, Marco FERRONE, Maria Silvia 
PANENI, Sabrina PRICL, CaSLab, Dicamp, University of Trieste, Piazzale Europa 1, 
34127 Trieste, Italy; Laura MARTINELLI, Sabino SINESI, CRP-FIAT Group, Via J. 
Linussio 1, 33020 Amaro (UD), Italy 
 
 
 
In this work we have applied the mesoscale simulation approach to study the equilibrium 
morphology of linear (AmBn) methacrylate diblock copolymer systems of special interest 
in the automotive industry. In particular, starting from atomistic-based simulations, we 
derived a detailed procedure to determine the mesoscale input parameters, such as 
correct Gaussian chain architectures, appropriate Flory-Huggins interaction parameters 
and bead self-diffusion coefficients, necessary to mesoscopic scale calculations. 
 
 
 
1. INTRODUCTION 

 Block copolymers are polymer chains consisting of segments with different chemical 

composition. The preference of the different polymer blocks to phase-separate from one 

another on the nanometer scale can lead to dramatically distinct physical and chemical 

properties in materials made from block copolymers. Due to their increased flexibility and 

toughness, these materials could potentially be less costly substitutes for existing 

materials. 

 The design and production of car lights often involve the mandatory choice of a given 

technopolymeric material, characterized by high thermal resistance, to be employed in 

small working areas and/or in the proximity of a light source. Further, these materials 

should possess enhanced performances with respect to impact resistance. A typical 

example is constituted by the so-called high-impact poly(methyl methacrylate), or PMMA. 

The drawback of these choices is, quite often, the elevate cost of such materials, mainly 

ascribable to the lack of market alternatives. Accordingly, the price difference between 

conventional and specialty polymers can constitute a vital problem for those industries 

which operate with highly restricted margins, as the automotive sector. A valid 

alternative, therefore, could be resorting to the engineerization of standard PMMA, by 

copolymerization with, for instance, n-butyl methacrylate(NBM) or acrylonitrile (AN). 



Aim of this work is the application of the mesoscale simulation approach to study the 

equilibrium morphology of linear (AmBn) methacrylate diblock copolymer systems of 

special interest in the automotive industry. To this purpose, we developed a procedure, 

based on atomistic molecular dynamic simulations, to derive the necessary input 

parameters for the successive mesoscale calculations, such as the architecture of the 

Gaussian chains, the Flory-Huggins interaction parameters and the bead self-diffusion 

coefficients. 

 

2. COMPUTATIONAL DETAILS 

 2.1. The Gaussian chain model 

 The systems under consideration were four methacrylate block copolymers made of 

PMMA, PNBM and PAN blocks of different compositions. These were selected to obtain 

specific ratios between the two block segments for the corresponding representations of 

the Gaussian chains, expressed in terms of Kuhn segments (0.5 and 0.3, respectively). 

We developed our Gaussian chain models from comparison of Random Phase 

Approximation (RPA)1 and Molecular Dynamics (MD) structure factors. 

 2.2. Structure factors determination 

 To determine the structure factors via MD simulation, different 3D periodic cells were 

generated for each of the four copolymer systems. After initial construction and 

optimization, the amorphous phases were checked for filling space regularly and 

eventually refined by short dynamics simulations (20 ps). The interatomic interactions 

were modeled with COMPASS force field2. The amorphous cells contained a number of 

atoms ≥2000, which is usually sufficient for avoiding finite size effects. The box length 

was between 27 and 30 Ǻ. For each configuration, MD simulations in the under constant 

temperature (298 K) and density (NVT ensemble) were conducted. Preliminary runs of 

200-250 ps were carried out in order to bring the system to the target temperature. After 

equilibration, main runs of 100 ps followed, during which trajectories were stored, 

periodically, for later postprocessing. For each copolymer studied, five to seven 

trajectories were generated, starting from different initial configurations. The structure 

factors were calculated as the average over the frames stored in the trajectory files 

obtained for each copolymer system. The structure factor maxima, obtained by MD, were 

fitted to the relevant maxima obtained by RPA for Gaussian chains, and expressed by 

the following relationship: 
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as a function of the Flory-Huggins interaction parameter χ, the number of segments N 

and a function of the chain segment length F(x). For each system considered, the fitting 

procedure was applied to three types of Gaussian chains: the first having a number of 

segments equal to the number of polymer monomers, the second featured a number of 

segments equal to the number of Kuhn segments, and the third was characterized by a 

number of segments smaller than the Kuhn segment number. Since for Gaussian chains 

the height of the maxima is dependent on the number of particles in the chain, in order to 

determine the optimal model for each copolymer, the structure factors of the single 

Gaussian chains were multiplied by the ratio between the number of particles in the 

corresponding MD simulation and the number of Gaussian chain beads. 

 2.3. F-H interaction parameter determination 

 The χ parameters were estimated as: 
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where Vmon is the average molecular volume of the two species making up each 

copolymer weighted over the volume fractions, and ∆Emix is the mixing energy of a binary 

mixture composed by the same volume fraction of the A and B species present in the 

diblock copolymer. This parameter is given by the difference between the cohesion 

energy of the pure components, weighted with respect to their volume fractions in the 

mixture, and the cohesion energy of the mixture. The pure components cohesion 

energies were calculated from NVT simulations as the mean total potential energy of 

intermolecular interactions. For each oligomer, the mean cohesion energy density (CED) 

resulted as the arithmetic average of the CED values obtained from NVT simulations of 

different initial configurations, as described above. Successively, MD runs were carried 

out to determine the cohesion energies of the mixtures. The F-H χ parameters obtained 

with the procedure outlined above were scaled from the atomistic dimension to the 

mesoscale, ensuring the constancy of the segregation parameter χN. 

 2.4. Bead self-diffusion coefficient determination 

 Bead self-diffusion coefficient is necessary to convert the mesoscopic dimensionless 

time step to an effective time scale. Accordingly: 

tMh ∆= −− 21βτ  

is the equation that relates the adimensional time step τ, used in the MesoDyn 



calculation algorithm3,4 to the effective time step ∆t via the bead self-diffusion coefficient. 

For each of the 3 species constituting the copolymers, an ensemble of 3D periodic cells 

was constructed and optimized, following the same procedure described previously. 

Each cell contained a suitable number of oligomers (≥ 2000 atoms), and the oligomers 

were constituted by a number of constitutive repeating units (CRU) equal to the number 

of CRU making up a bead. Diffusion coefficients were calculated from the mean square 

displacement (MSD) of the molecules composing each cell by means of the Einstein 

equation5. In the present study, the MSDs for each of the three species were calculated 

as averages for five different 300 ps trajectory runs from different initial configurations. 

The MD simulations (NVT conditions) were run at 298 and 400 K, and at the 

corresponding densities, obtained by NPT simulations at the same temperatures. Finally, 

the self-diffusion coefficients of the beads were estimated from the linear portion of the 

corresponding MSD vs. time curves, and further weighted over the volume fractions of 

each block for each copolymer. 

2.5. Mesoscopic simulations 

 The phase separation dynamics at the mesoscopic level was simulated by MesoDyn 

using the parameter sets obtained with the procedure outlined above. We performed four 

simulations, one for each copolymer. All simulations were started from a homogeneous 

density distribution with instantaneous quench without any shear applied. The equilibrium 

condition reached was used as a starting configuration for the application of shear. A 

shear rate of 0.001 ns-1 was applied, and the systems were further evolved towards 

equilibrium. The phase separation dynamics was monitored by the time evolution of the 

order parameter P. 

 

3. Results and discussion 

In Table 1 we report the Gaussian chain architectures from RPA, the mesoscale χ  

parameter values and the bead self-diffusion coefficients obtained by the procedure 

outlined above. It is interesting to note that 1) the number of segments of each Gaussian 

chain resulting from RPA is smaller than the corresponding chain based on Kuhn 

segments (results not shown) and 2) the best fit was attained by reducing the number of 

segments and increasing their length. Two goals then were achieved simultaneously: 1) 

the computational times involved in the successive mesoscale simulation have been 

drastically reduced (as they scale linearly with the number of beads of the Gaussian 

chain), and 2) the accuracy of the model representation has been noteworthy enhanced. 



Copolymer Gaussian 

Chain 

Bead length

(nm) 

D 

(1010cm2/s)
χRT 

(kJ/mol) 

PMMA-PNBM (1) A5B5 2.59 2.34 10.6 

PMMA-PNBM (2) A3B7 2.74 2.56 9.24 

PMMA-PAN (1) A5B5 2.04 2.04 10.4 

PMMA-PAN (2) A3B7 1.91 2.24 11.3 

 
TABLE 1 

Input parameters for mesoscale simulations derived from atomistic MD procedures 
 
 
 

Furthermore, even though the fitting operation implies that the wavelength of the 

fluctuations in the Gaussian chain and the model derived from MD simulations are the 

same, the amplitude in the Gaussian chain is overestimated. This has an important 

consequence for the noise expansion parameter Ω, which represents the number of 

particles in a grid cell of size h3. For such a reason the noise values for the copolymer 

systems were estimated on the basis of the PMMA, PNBM and PAN densities 

(calculated by NPT MD simulations as previously described) weighted over their volume 

fractions in each copolymer and successively scaled by a proper factor, in order to 

account for fluctuations of the same amplitude. For mesoscale calculations, we have 

simulated the time evolution of the four systems in a cubic box with 323 cells 

corresponding to a cell length of 43 nm, 42 nm, 39 nm and 39 nm, respectively, 

determined on the basis of the mean length of the beads weighted over the volume 

fractions of each block in the copolymer. The self-diffusion coefficients allowed us to 

convert the mesoscopic dimensionless time step (0.5) to an effective time scale which 

was of the order of the microseconds in the four mesoscale simulations we performed. 

As a fist example, consider system PMMA-PNBM (1) which, starting from the 

configuration reached in the absence of shear, characterized by the presence of several 

defects, has been evolved under shear towards a lamellar morphology, reaching a 

plateau of the order parameter in 59.1 ms. Subsequently, upon shear removal, the 

system has progressed toward a new equilibrium configuration, in which the partial 

lamellar morphology evolved to completion, in 39.8 ms from shear removal (see Figure 

1). 

Another meaningful example is given by system PMMA-PAN (2). Figure 2 shows the 

morphology of the A4B9 and A3B7 (right) systems after 2000 steps of simulation under 



shear, corresponding to 53.0 and 67.5 ms, respectively. 

 

  

 
Figure 1 

Pre-shear equilibrium configuration (left) and equilibrium configuration after shear 
removal (right) for system PMMA-PNBM (1). 
 
 
 

 

  

 
Figure 2 

Morphology of A4B9 (left) and A3B7 (right) architectures for system PMMA-PAN (2) after 
2000 simulation steps under shear. 
 
 
 

During the mapping process, we observed that the Gaussian chain A3B7, resulting from 



RPA, was more representative of the real chain than that obtained on the basis of Kuhn 

segments (A4B9). According to the self-consistent field theory (SCFT)6, this choice 

reflects in a lower computational cost without affecting the final segregated morphology. 

As we can see for the A4B9 system, corresponding to a smaller effective evolutionary 

time, some necks between the tubes are still well present, whereas the tubes of the 

alternative, A3B7 system are completely formed and separated, being this system in an 

equilibrium configuration. 

 

4. CONCLUSIONS 

In this work we have developed a procedure that, resorting to atomistic molecular 

simulations, allowed: 1) the apt description of diblock copolymer chains with Gaussian 

chain models made of a smaller number of segments and more representative than 

those described on the basis of Kuhn segment length; 2) the obtainment of specific 

Flory-Huggins interaction parameters for diblock copolymers; 3) the determination of the 

bead self-diffusion coefficients for an estimation of the equilibration time of each, single 

system. All these information have been used as input parameters for mesoscale 

simulations, through which: 1) the equilibrium morphology of each system can be 

described; 2) a comparison, in terms of time-to-equilibrium of different systems under the 

action of an applied shear, can be carried out on the bases of a common procedure for 

the determination of the self-diffusion coefficients, by which the simulation adimensional 

time step can be converted to an effective time step. 
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