How good a surfactant for polymer silicate nanocomposites can be? Answers from atomistic and mesoscale molecular simulations

M. Fermeglia, A. Coslanich, N. Morellato, A. Armellin, L. Comper

The in situ formation and assembly of silicate nanoparticles with high aspect ratio represent the key to novel structural and functional polymeric materials with skeleton-like silicate superstructures. One of the most promising composite systems is the hybrids based on organic polymers and inorganic clay minerals consisting of layered silicates (PCNs).

The selection of a suitable surfactant, which contributes to render the clays organophilic and to lower the surface energy of the clay layers, becomes a prominent issue in PCN design.

The interactions between polymer and surfactant play a major role in promoting the intercalation of the macromolecules within the galleys of the pre-treated nanofiller. Indeed, the formation and the equilibrium structure of an organically modified PCN is a strong function of the nature of the polymer as well as the chain length and structure of the surfactant.

The aim of this work is twofold: a) the development of a methodology to determine the suitable mesoscale parameters for a given polymer-surfactant couple and b) the use of mesoscale simulations to rank the surfactant molecules by increasing efficiency on the basis of the segregation level of the resulting morphology.