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Abstract

A two-phase model for diffusion and drug release through swollen polymeric matrices is presented and solved. This
model explains the non-Fickian release behaviour experimentally found for the system constituted by theophylline in a
water-swollen scleroglucan matrix in a slab form. The exponential nature of the temporal behaviour of the drug in the
stationary phase is confirmed by means of Green function analysis. The boundary conditions deriving from the non-self-sus-
taining nature of the polymeric gel and from the presence of a net are investigated in detail.
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1. Introduction

One of the open problems in controlled release analysis is the interpretation of pseudo non-Fickian kinetics in
swollen hydrogels [1-4], expressed by a semiempirical power-law behaviour in the fractional solute release
M/M,,

MM, ~t", MM, <0.5. (1)

In release structures in the swollen state, solute diffusion is not coupled to the simultaneous evolution of the gel
front: the swelling degree is kept practically constant during the experiment. The interpretation of relationship
(1) is not only important from the theoretical standpoint but has important consequences in the design of optimal
release matrices in order to obtain matrix devices with the desired release kinetics (e.g. zero-order kinetics).
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In a previous article [5] we analyzed the role of the disordered structure of a matrix on the release kinetics [6]
and proposed a two-phase model to explain the apparent exponent n greater than 1/2. The reason for the
introduction of a two-phase model is related to the presence of hinderance or field effects between the solute
and polymeric matrix, which can be expressed macroscopically in terms of irreversible adsorption kinetics.

In this article we present and analyze the experimental results of the release of theophylline from
water-swollen scleroglucan matrices by comparing these data with the prediction of the kinetic model proposed
in [5].

The article is organized as follows. First we evaluate the effective diffusion coefficient of theophylline in
scleroglucan matrices. Then we consider the influence of the experimental apparatus on the boundary conditions
induced by the presence of a wire gauze to sustain the gel. General criteria are proposed and it is shown that the
wire gauze introduces mixed boundary conditions which, for the experimental conditions under investigation,
can be neglected and therefore do not modify the assumption of perfect sink conditions.

We then discuss in detail the application of the two-phase model to the experimental results of theophylline
in water-swollen scleroglucan. The model is also compared with other literature data [3]. A short-cut method is
proposed for evaluating the kinetic rate & (describing in the two-phase model the irreversible release from the
gel phase to the sol phase) from the value of the diffusivity and of the exponent n. Black-box analysis of the
release data based on the application of the Green function method confirms the validity of the model proposed.

2. Experimental

2.1. Materials

The polysaccharide scleroglucan (Actigum CS11, M,, = 1.2 X 10°, Mero-Russelot-Satia, France) used for
hydrogel matrix formulation was supplied by Vectorpharma S.p.A., Trieste, Italy.

Theophylline (C,HN,0,, M, = 180.17, water solubility at 25°C = 8.3 mg/g) was chosen as a typical
model drug.

For the preparation of homogeneous self-sustaining hydrogel systems, scleroglucan was slowly added to
well-stirred aqueous theophylline solutions at room temperature. The systems were allowed to rest for 12 h to
obtain polymer swelling and gel formation. A polymer concentration of 2% w/w was chosen to ensure the
required stable gel characteristics.

2.2. Diffusion cell and drug detecting systems

The diffusion cell used in controlled-release experiments is schematically depicted in Fig. 1A. As can be seen
in Fig. 1A, the diffusion cell looks like a double-walled beaker open at the top. The thickness of the gel-slab is
L =6 mm. The Teflon vessel containing the hydrogel, open at the top and closed with a net at the bottom, is
placed at the top of the diffusion cell filled with distilled water (top configuration). The contact between
hydrogel and release environment. (inner cylinder) takes place through the holes of a net. The homogeneous
distribution of the drug in the release environment is ensured by a magnetic stirrer, placed at the bottom of the
inner cylinder. Fig. 1B) shows a schematic diagram of the experimental setup. During each test, drug
concentration in the release environment was monitored via an on-line Perkin Elmer Lambda series UV
spectrophotometer (wavelength A =217 nm, cell path =0.1 cm). Experimental concentration values were
automatically collected with a sampling time of 10 s and stored by a computerized system. A peristaltic pump
was used for system liquid circulation and a surge chamber was inserted between the diffusion cell and the
pump to reduce hydrogel matrix erosion due to interface oscillation.
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Fig. 1. (A) Schematic representation of the diffusion cell. (B) Schematic diagram of the experimental setup: (1) spectrophotometer; (2)
pump; (3) magnetic stirrer; (4) diffusion cell; (5) thermostatic system.

2.3. Operating variable

The selected operation variables are reported in Table 1. A range of theophylline concentrations ¢, was
chosen to investigate the effects of drug concentration on the release process. Different stirring speeds and
temperature values (including the physiologically interesting values) were also adopted to check on agitation
and thermal effects on the kinetics. Data reproducibility was ensured by running each experiment in triplicate.

3. Effective diffusion coefficient

Let us consider the diffusion of an initially uniformly distributed drug (theophylline) through a water-swollen
polymeric (scleroglucan) non-erodible matrix in slab form under perfect sink conditions. The initial loading of
the matrix is lower than the solubility limit and the degree of swelling is constant during the experiment. The
simplest one-dimensional model describing the phenomenon is

dc d*c
— =D— 2
at ax*’ (2)
Table |
Selected operation variables
Stirring speed £ =100, 300, 600 (rpm)
Concentration of theophylline in the hydrogel ¢p=1.0-8.0(mg/g)

Temperature T =20-35(CC)
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to be solved with the initial and boundary conditions:

c(x0)=¢, 0<x<L, (3)
o 0 L 0 4
— = s ’t —

x|y g e(L:t) (4)

L being the thickness of the slab and D the effective diffusion coefficient of the drug in the swelling agent. The
effective diffusion coefficient D takes into account the influence of the polymeric matrix on the diffusive
motion of the drug in the solvent and deviates from the corresponding Stokes—Einstein diffusivity Dg by a
factor G, called the accessibility factor, which macroscopically describes the steric interactions between solute
and porous matrix [7]

D=D.G (5)
The solute fraction released up to time ¢ attains the form
il 1 (2m— 1)’ 2Dt
s (2m— 1) GXP{_ 412

8
M/M.=1-— (6)
Ko

and the effective diffusion coefficient D can be evaluated from the typical asymptotic (i.e. for large )

exponential relaxation associated with diffusive motion 5]
2

In(1-M/M,) ~ —Z-I:Z‘Dt. (7

The value of D evaluated from Eq. (7) for the system theophylline / water-swollen scleroglucan for a fixed

degree of swelling s (s=49 mg H,0/mg polymer, c,= 1.0 mg/g H,0) is 6.0 +0.7-107% cm?/s at

T=30°C (see Fig. 2). Fig. 3 shows the dependence of D on temperature T, in the temperature range

20 < T < 35°C. It can be seen that the temperature dependence of D can be practically neglected by further

considering that the variability range of D with T is of the same order of magnitude as the error in evaluating
D itself.

o F(M/MY
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Fig. 2. Log-normal plot of | —(M, / M.} vs. 1 (T = 30°C, ¢, =1 mg/g H,0). The slope of the curve is proportional to the value of the
effective diffusion coefficient D [see Eq. (7)),
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Fig. 3. Log-normal plot of 1—{(A4, /M,) vs. ¢ for different values of the temperature 7 in the range 20 < T < 35°C. The arrow indicates
increasing temperature.

It is important to observe that the asymptotic scaling law (7) depends on the boundary conditions, through the
value of the eigenvalue associated with the fundamental mode [Eq. (7) corresponds to burst-effect experiments
[5]] and is also valid if one considers the two-phase model discussed in [5]. See section 5 for further details.

The exponential relaxation (7) in controlled-release experiments is a typical feature of constant diffusivity
devices. Deviation from Eq. (7) can be obtained only if D varies significatively with time. This can happen if
the degree of swelling during solute diffusion varies appreciably and if the dependence of the diffusivity on the
swelling degree cannot be neglected [8,9].

4. Boundary conditions for a non-self-sustaining gel

Under our experimental conditions the diffusion cell is placed vertically and the gel slab is sustained by
means of a net. It is therefore interesting to analyze the effects of the net on the boundary conditions and
specifically on the assumption of perfect sink conditions. The mathematical modeling of the release should thus
be modified by considering a two-dimensional simulation taking into account that the release area is distributed
over a fixed number of holes.

Fig. 4 shows the proper boundary conditions to be imposed on a two-dimensional model of the diffusion
experiment. The net is characterized by the ratio ¢ between the effective release area A, and the total slab
surface area A, ¢ =A;/A and by the number n_ of holes into which A, is divided.

The release kinetics still exhibits an asymptotic exponential relaxation, analogous to Eq. (7), but the prefactor
of the exponential scaling, b(¢, n,), is modified by the boundary conditions

tD
In(1 = M,/M.) ~ ~b(@n,)7, 7= = (8)
and depends on ¢ and n,. M_/M, is the solute fraction released up to the dimensionless time 7, obtained from
the numerical solution of a two-dimensional diffusion equation analogous to Eq. (2), subjected to the boundary
conditions indicated in Fig. 4. In the numerical solution of the two-dimensional diffusion model, the dimensions
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Fig. 4. Schematic representation of the proper boundary conditions to be imposed in a two-dimensional model of the diffusion phenomenon.
The net has cylindrical symmetry but is modeled as a line in two-dimensional simulations. The x-axis is the transport (vertical) direction.

of the lattice representing the diffusion cell were assumed to be proportional to the corresponding dimensions of
the experimental apparatus.

Fig. 5 shows that for a fixed value of ¢ there exists a number of holes 7,(¢) such that, for n, > 7,(¢), the
prefactor b(¢, n,) does not depend appreciably on n, and practically coincides with lim, ., b(¢o,n,) = m2/4.

This implies that if n, > 7 (), the presence of the net can be neglected; that the diffusion equation can be
written in one dimension and solved in a closed form by imposing perfect sink conditions and that the diffusion
coefficient can be evaluated directly from Eq. (7). In our experiments ¢ = 0.278 and n, = 356. Consequently,
from the data of Fig. 5 (for ¢ = 0.278) it can be seen that in our experiments perfect sink conditions can be
assumed as a good approximation of the real mixed boundary conditions to be imposed at x = L.

5. Two-phase model

Besides the hindered effects related to the porosity and to the crosslinking of the matrix, the key problem in
the kinetics of controiled release is represented by the anomalous release behaviour of gel devices showing, at
intermediate time scales, an empirical power-law behaviour in the fractional solute release, Eq. (1), with an
exponent n usually greater than 1/2 (pseudo non-Fickian diffusion). Simulations of the sorption kinetics in

blp,n,)
0;

a)g-0.278
b} =0.60

0 10 20 30 40n,50

Fig. 5. b(@,n,) vs. n, for two different values of . The dotted line represents lim__,  b(¢,n, )= 7% /4.

gt
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disordered models of the matrix (represented by percolation clusters) in the case both of lag and burst conditions
have clearly shown that an exponent n greater than 1/2 cannot be related to the disordered geometric and
topological structure of the matrix [5]. In our experiments erosion effects are negligible and the diffusivity D of
the theophylline is practically constant. The origin of the apparent non-Fickian behaviour should be a
consequence of other kinetic mechanisms. The ‘‘anomalous’” behaviour (n>1/2) can be explained by
including entrapping effects in the model associated with solute /polymeric matrix interactions, stemming from
potential energy fields, hindered constraints or physical adsorption phenomena.

In each case, these effects can be macroscopically described by means of a two-phase kinetic model: a
fraction €, of solute molecules is initially entrapped in the gel phase and irreversibly released in the sol phase in
which the solute diffuses with an effective diffusion coefficient D. The dynamic equations describing this
phenomenon are:

dc *c  dq

— =D— - — 9
ar ax* (9)
dq

— = —kgq, 10
Py q (10)

where ¢ x,t) and ¢(r) are drug concentrations, respectively, in the sol and in the gel phases. Eqs. (9) and (10)
are to be solved with the initial and boundary conditions:

c(x0)=(1—-¢€)c, 0<x<L, g(0) = €, (11)
dc

—| =0, (L) =0. (12)
ax x=0

For €, = 1 the solute fraction released up to time ¢ attains the form:

M’ < x
7 Y b)) X s (13)
x m==] m=]
with
| (1 = exp(— KB2) - (1 - exp(—ke))| i B2
—5 | = (1 —expl —k@ 1) — (1 —exp( — 4t if @-#1
() ={ 1P| & (14)
1—(1+t)exp(—ket) fd2=1,
1 —
P = 555 forevery &, (15)
5 _Gm-nr1 K2\
m 2 o ~ \p])” (16)

where @ is the Thiele modulus. Of course, the model proposed is valid if the initial loading of the gel is lower
than the solubility limit.

As can be seen from Egs. (13)-(16), the asymptotic relaxation behaviour of M,/M., is still given by Eq. (7)
if 2> 7?/4. This is usually the case, since the kinetic parameter k is much larger than the diffusive
parameter D /L?, as discussed in the next section.

Fig. 6A and B show the behaviour of M,/M.. for different values of the kinetic constant k (for fixed values
of D=6.0-10"% cm?/s and €, = 1). The log-log plot of the corresponding curves (Fig. 6B) indicates that the
mode! furnishes values of the exponent n (evaluated at intermediate time scales) which cover all the
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Fig. 6. (A) M, /M,, vs. 1 for different values of the kinetic constant k; (@) k=1-10"2s" ', (b) k=75-10"% s " (c) k=25-10"*s"";
(d) k=5-10"° s~ . For all curves D =6.0-10"% cm? /s, ¢, = 1. (B) Log-log plot of the data of Fig. 6A.

“‘non-Fickian’’ range. This is still more evident from Fig. 7A), which shows the behaviour of n vs. k for
different values of D. All the curves satisfy the condition that, in the limit of large values of the Thiele
modulus, the internal release kinetics is so fast with respect to the diffusive motion in the sol phase that the
presence of the gel phase can be practically neglected. Consequently, the two-phase model tends to the classical
diffusion model and n converges towards to 1/2.

By following the dimensionless formulation previously adopted, Egs. (9) and (10) become

ac ¥t ag -
P R = )
iq_z__qjﬂ—
or ’

where ¢=c/c,, §=q/q9,, 2=x/L, 7=Dt/I*. From the dimensionless formulation it can easily be
recognized that the exponent » is a function only of the Thiele modulus (Fig. 7B). Eq. (17) and Fig. 7B make it
possible to appreciate the role of the parameters entering into Egs. (9) and (10). The diffusion coefficient D
specifies the time scale of the release and can be measured from the relaxation behaviour (see section 3). The
exponent n is modulated by the value of the Thiele modulus @ alone. These observations enable us to
formulate a simple strategy for parameter estimation.

12} 12} o o
O ¢
n n
08} 0.8
04/ 0.4
|
A) B)
0.0 Lo i s 0.0 Lssmimn e i i
107 10® 10° 10* 10 102 10'k 8] 107 100 101 102 10 @7 10*

Fig. 7. (A) n vs. k for different values of D:(a) D=1.0-10"% cm?/s; (b) D=6.0-10"° ecm?/s; (¢) D = 6.0-10~> cm? /s.For all curves
€, = 1. The dashed lines shows the evaluation of k for n=10.64 and D =6.0-10"% c¢m? /s, which correspond to the parameter values
experimentally found in the theophylline /water-swollen scleroglucan system. (B) n vs. @2 as deduced from the data of Fig. 7A.
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6. Experimental results

Fig. 8 shows in a log—log plot three experimental sorption curves of the release behaviour (under perfect sink
condition) of the system theophylline / water-swollen scleroglucan at different temperatures. All the experiments
were repeated three times, furnishing the same results and confirming the reproducibility of the data. The
log—log scale highlighted the ‘‘anomalous behaviour’’, corresponding to a value of the exponent n = 0.64 + 0.04
(practically the same over the considered temperature range). As discussed above, these release profiles cannot
be explained by means of a purely diffusional model and the hypothesis of solute/gel interaction should be
considered.

Given the lack of information about the nature of these interactions, it is convenient to develop a short-cut
procedure for the evaluation of % based on the characteristic curves of n vs. k for fixed values of D (see Fig.
7A). Once n is measured from the sorption curves and D is evaluated from relaxation data (section 3), the value
of k can be readily obtained from the curve n = n(%) (Fig. 7A). In all the experimental runs the value n = 0.64,
D =6.0-10"% cm?/s can be assumed practically constant. With these values the curve of Fig. 7A gives a value
of k=1.5-10"% s~'. Fig. 9A and B shows the comparison of the model with the experimental data. The
agreement is fairly good. It should be also observed that, having no information about the initial division of the
solute molecules between the two phases, we have assumed €, = 1. The agreement of the theoretical model and
the experimental results would probably be closer if the value of €, could be estimated a priori. This would
involve a better understanding of the nature of the drug/matrix interactions and will be one of the future steps
in our investigation.

The two-phase model can also be applied in controlled-release experiments in the presence of moderate
swelling effects. Vyavahare et al. [3] present experimental data on the release of theophylline from 2-hydroxy-
ethyl methacrylate—glycidil methacrylate (HEMA-GMA) mixtures in an acidic medium.

Fig. 10A and B show, respectively, the log—log plot of fractional release data and their reconstruction with
the two-phase model. The diffusivity and the Thiele modulus were obtained by applying the methods discussed
in sections 3 and 5. A review of all the experimental and model parameters is given in Table 2. As can be seen
from Fig. 9B, the two-phase model proves to be in satisfactory agreement with these experimental data. The
only case in which theory and experiment do not fit is that of Fig. 10B(e), for which Vyavahare et al. found the

c
b
a a) T=20°C
b) T=30°C
c) T=35°C
10'2L . L L laun L s
102 103 104t sl 10°

Fig. 8. Log-log plot of the experimental sorption curves (M, /M, vs. 1) for different values of 7. For all curves ¢, = 1 mg/g H,0.
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Fig. 9. Comparison of the experimental release curve (T = 30°C, ¢, = | mg/g H,0) with the two-phase model predictions (D = 6.0-107°
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Fig. 10. Comparison of the experimental data (point) of M, /M, taken from [3] in 0.05 N H,SO, at 37°C with the two-phase model
predictions (curves) in log-log scale: (a) pf(HEMA-15%GMA) copolymer; (b) p(HEMA-20%GMA) copolymer; (¢) p(HEMA-30%GMA)
copolymer; (d) p(HEMA-40%GMA) copolymer; (¢) p(HEMA-50%GMA) copolymer. (B) Same data as Fig. 10A in normal scale.

maximal relative swelling degree increment As = 0.1701 (g H,0/g polymer) during the release compared to
the initial swelling degree s, = 0.2340 (g H,0/g polymer). It should be observed in passing that the values of
n reported in [3] are incorrectly written. The values of the exponent » reported in Table 2 correspond to the best
fit of the experimental data of Fig. 10A for M,/M, up to 0.5. It should also be observed that model prediction
follows the curvature effects in the log—log plot of experimental release data extremely well (see Fig. 10A).
These “‘curvature effects’” are a confirmation that the exponent n is not universal but rather a semiempirical
exponent related to solute /matrix interactions.

Table 2

Review of all the experimental and model parameters evaluated from the data of Vyavahare et al. [3]

p(HEMA-GMA) copolymer Diffusivity D 107 (cm? /s) n (best fit) Thiele modulus @2
GMA content (wt%)

15 1.134+0.1 0.540 27545

20 0.90+0.1 0.540 27545

30 0.69+0.1 0.708 49+ 1

40 0.33+0.03 0.703 49+1

50 0.33+0.03 0.721 46+ 1
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7. Experimental validation of two-phase model: Green function analysis

The validation of the two-phase model proposed in the previous sections can be performed by a direct
analysis of the experimental data. In general, in the presence of a uniform distribution of the solute in the gel
phase, it is possible to express the balance equation describing drug release, in the form

ac a%c 8

— =D— +£(1),

+- =D +1(1) (18)
where the unknown function f{(¢) is to be determined from experimental data. The two-phase model with an
irreversible internal kinetics discussed in the previous sections predicts a functional form f() = f, exp(—kz),
i.e. an exponential decay of f(r). Data analysis can be performed starting from Eq. (18) by applying the Green

function method and considering the boundary and initial conditions (11) and (12). The solution of Eq. (18) can
be written in dimensionless form as

v .
o(z.7) —fofof(z,g,v— 0)g(0)dede, (19)
where 7=tD/I?, z=x/L, g(v) = f(v1*/D)r and
Z(z,6,7—0)=2 Y sin[A,(1-2)]sin[A,(1 = ¢)]exp[—A%(7— 6)], (20)
m=1
with A, = (2m — D/2. Correspondingly,
T dec
MT—_—DL(—Z)

where

_]de=f07def0"?l<e—n)g(n>dn (21)

Z,(0)=2D f} exp(—A%0). (22)

m=1

Starting from Eq. (21) it is possible to interpolate the experimental data by developing g(7) in power series

g(1)= XL gy" (23)
h=0
and by minimizing the least-square metrics
N 2

["[M,— x gmh(f)] dr= min, (24)

0 h=0
where

$u(7) = [5d0/5Z,(8 = m)n"dn. (25)
By applying least-square fitting, the unknown coefficients {g,} can be obtained by solving the linear system

Pg=m. (26)

where @={®,,} is a (N + 1) X (N + 1) matrix,

D= " u(r) bi(7)dr, (27)
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Fig. 11. (A) Log normal plot g(r) vs. 7. The line highlights the exponential nature of g(7) and the slope is proportional to the value of k.
(B) Comparison of g(r) with the exponential fitting with k = 233-1073 s~

g= (go,---,8y), and m= (mgy,...,my) is a (N + 1)-dimensional vector associated with the experimental
measurements of the release M_
mh=j(§'M7¢h(T)dT' (28)

In the optimization of the least-square functional (24) the order of polynomial N and the time-instant 7~ are to
be specified. The optimization procedure is not affected by the value of N as it is sufficiently large (N > 8). The
value of 7* is more important since, for high Thiele moduli, it should be selected in order to enhance the initial
release behaviour. We chose 7° as the value of dimensionless time furnishing a fractional release of 0.35, i.e.
M_./M, = 0.35. However, the numerical evaluation of the coefficients { gh} is robust for small changes in
025<M,./M, <0.45.

Fig. 11A and B shows the results of optimization together with the exponential fitting with k =2.3-1073
s~! (N = 19). The exponential behaviour of g(7) is in agreement with the two-phase model predictions, and the
obtained value of k is of the same order of magnitude as the short-cut estimate discussed in the previous
section. The small quantitative discrepancy between the values of k obtained here and in the previous section is
of minor relevance, especially if we consider that for k=2.3-1073 s™! and D =6.0-107¢ cm?/s, from the
curve of Fig. 7A we obtain a value of n = 0.60, which is within the error range of the experimental estimate of
n.

8. Conclusions

This article presents experimental results of the release of theophylline from water-swollen scleroglucan
matrices which show a value of the exponent n that is definitely larger than 1/2. The predictions of the
two-phase model proposed prove to be in close agreement with the experimental results.

We also present a simple approach for parameter identification from release data. From the scaling of the
fractional release it is possible to obtain an accurate value of the solute diffusivity D. From the value of
exponent n, given D, the value of the parameter £ can be easily estimated. In particular, the dependence of n
on k and D is extremely interesting since it enables to understand the role of the Thiele modulus @ in apparent
anomalies in release kinetics.

The anomalous exponent n observed in release systems with a constant swelling degree is a monotonic
decreasing function of @2

The model results have been also checked with literature data on the controlled release of theophylline from
HEMA-GMA matrices [3].
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The analysis presented opens up interesting research perspectives in the study of controlled release through
swollen gels. The microscopic interpretation of origin of the entrapped phase as a consequence of specific
solute /matrix interactions is certainly the most interesting topic to be investigated. It is also important to
compare the predictions of the proposed two-phase model with other models that introduce a time-dependent
diffusion coefficient to take into account the dependence of the diffusivity on the swelling degree, in those cases
in which the swelling degree varies appreciably during the experiment. These topics constitute the main thrust of
our present research activity.

9. List of symbols

A lab surface area

A, effective release area
b(@,ny) see Eq. (8)

c drug concentration

c dimensionless drug concentration in the sol phase
[ initial drug concentration

D effective diffusion coefficient
Dg Stokes—Einstein diffusivity

G accessibility factor

g Green Function

k kinetic coefficient

L gel slab thickness

M,/M, fractional solute release

M, solute release up to the dimensionless time 7
n anomalous exponent [see Eq. (1)]

N order of polynomial expansion

noy number of net holes

q drug concentration in the gel phase

q dimensionless drug concentration in the gel phase
5 swelling degree

55 initial swelling degree

t time

T temperature

x spatial coordinate

z dimensionless spatial coordinate

9.1. Greek letters

€, initial drug partition coefficient between the sol and the gel phase
A, (2m — /2 (see Eq. (20))

T see Eq. (14)

Mooc see Eq. (15)

T dimensionless time

7" see Eq. (27)

@ Ay/A

1] Thiele modulus

b, see Eq. (25)
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