Multiphase multicomponent equilibria for mixtures containing polymers by the perturbation theory

Federica Favari, Alberto Bertucco, Nicola Elvassore, Maurizio Fermeglia

Corresponding author. Tel.: 0039-40-6763438; fax: 0039-40-569823.
E-mail address: mauf@dicamp.univ.trieste.it (M. Fermeglia)

Abstract

The correlating and predictive capabilities of a thermodynamic model based on the perturbation theory are investigated, with reference to mixtures containing components of different size and molecular interactions. The simplified Perturbed-Hard-Sphere-Chain (PHSC) equation of state is applied to a series of pure polymers, a number of solvents and pure carbon dioxide, and both volumetric and equilibrium properties are considered. The ability of the proposed model to reproduce experimental phase equilibrium data is discussed and tested with reference to binary and multicomponent mixtures, in the presence of vapor–liquid, liquid–liquid and vapor–liquid–liquid equilibria. Attention is focused on the ternary system polystyrene–cyclohexane–carbon dioxide, to test the proposed thermodynamic model in view of simulating supercritical antisolvent-induced fractionation processes. It is shown that the PHSC equation of state can be reliably used for calculating the phase behavior of such a complex system in different conditions.

Keywords: Polymer systems; Vapor–liquid equilibria; Liquid–liquid equilibria; Vapor–liquid–liquid equilibria; PHSC EOS; Multi-component mixtures; Supercritical antisolvent separation

1. Introduction

As an answer to the cost reduction and the increasing efficiency of the polymer industry it is necessary to have a thermodynamic model able to describe the behavior of the mixtures in the widest range of operating conditions. This model, essentially used for describing phase equilibrium, is the most important tool of any process simulator, which in turn is a key tool in the modern chemical engineering profession. Examples of relevant industrial applications in this respect are the devolatilization of a solvent from a polymer solution, processes involving polymer blends and the new separation processes of a polymer–solvent mixture using supercritical solvents and antisolvents (SAS).

The SAS process is particularly interesting both from a practical and theoretical point of view (Bungert, Sadowski & Arlt, 1997). In practice, this separation technique may be successfully applied when thermal degradation of the polymer may occur if a traditional process is used. Basically, it uses the phase separation of a liquid polymer solution into a polymer-rich phase and a solvent-rich phase, which is almost polymer free. This phenomenon, which appears at elevated pressures by increasing temperature, according to the lower critical solution temperature behavior, can be obtained to lower temperatures by the addition of a compressed gas to a polymer–solvent system. This is so because the increased free volume of the solvent due to the supercritical additive is equivalent to the temperature effect in causing the high-temperature phase separation (Seckner, McClellan & McHugh, 1988). Solvent recovery processes from a polymer solution can then be carried out under less severe conditions, in terms of thermal stability of the polymer, and with less energetic demand.

To be useful for such complex industrial applications, the thermodynamic model that we need must be able to describe mixtures containing components with large differences in size and molecular interactions, in the simultaneous presence of two liquid and one vapor phases. It must be also able to reproduce all the different types of phase equilibria experimentally observed in these
Nomenclature

- \(a \): equation of state parameter reflecting the attractive forces between two non-bonded segments, kPa \(\text{cm}^3/\text{mol}^2 \)
- \(a_p \): equation of state attractive parameter for the polymer, kPa \(\text{cm}^6/\text{mol}^2 \)
- \(a_{ij} \): equation of state parameter for the binary pair \(i,j \), kPa \(\text{cm}^6/\text{mol}^2 \)
- \(A^* \): characteristic surface area of a polymer's molecule, cm\(^2/\text{mol} \)
- \(b \): Van der Waals covolume per segment, cm\(^3/\text{mol} \)
- \(b_{ij} \): equation of state parameter for the binary pair \(i,j \), cm\(^3/\text{mol} \)
- \(d \): hard-sphere diameter, Å
- \(d_{ij}^* \): \(i,j \)-pair hard-sphere diameter, Å
- \(E^* \): characteristic cohesive energy, kJ/mol
- \(E_0^* \): characteristic cohesive energy of a polymer's molecule, kJ/mol
- \(f_{i,L}^* \): fugacity of component \(i \) in the polymer-rich liquid phase, kPa
- \(f_{i,L}^{\text{CALC}} \): pure component or mixture calculated single-phase liquid pressure for the \(i \)th datum, kPa
- \(f_{i,L}^{\text{EXP}} \): pure component or mixture experimental single-phase liquid pressure for the \(i \)th datum, kPa
- \(f_{i,V}^* \): fugacity of component \(i \) in the vapor phase, kPa
- \(F_a \): universal function used to calculate \(a(T) \)
- \(F_b \): universal function used to calculate \(b(T) \)
- \(g_{ij}(d_{ij}) \): \(i,j \)-pair radial distribution function of hard spheres at contact
- \(g_{ij}(d_{ij}) \): \(i,j \)-pair radial distribution function of hard spheres mixtures at contact
- \(k \): Boltzmann's constant, J/mol K
- \(k_{ij} \): \(i,j \)-pair interaction parameter
- \(K_i \): separation factors of components of the mixture
- \(m \): number of components of the mixture
- \(M \): molecular weight
- \(M_0 \): molecular weight of the repeat unit of a polymer
- \(M_i^{\text{CALC}} \): calculated generic property for the \(i \)th datum
- \(M_i^{\text{EXP}} \): experimental generic property for the \(i \)th datum
- \(n \): number of experimental data used for the fitting procedure
- \(N \): number of molecules
- \(N_A \): Avogadro's constant, molecule/mol
- \(N_i \): number of the molecules of component \(i \)
- \(\text{NDAT} \): number of experimental data used for the fitting procedure
- \(P \): pressure, kPa
- \(P_i^{\text{CALC}} \): pure component or mixture calculated vapor pressure for the \(i \)th datum, kPa
- \(P_i^{\text{EXP}} \): pure component or mixture experimental vapor pressure for the \(i \)th datum, kPa
- \(r \): number of segments per molecule
- \(r_i \): number of segments for the \(i \)th component
- \(r_p \): corrected number of segments for the polymer
- \(R_a \): gas constant, J/mol K
- \(\text{RMSD} \): root mean square deviation
- \(T \): temperature, K
- \(V \): volume of the system, cm\(^3 \)
- \(V^* \): characteristic volume, cm\(^3/\text{mol} \)
- \(V_0^* \): characteristic volume of a polymer's molecules, cm\(^3/\text{mol} \)
- \(w_i \): weights of the pure components properties used for data regression
- \(x_i \): number fraction of molecules
- \(x_i \): mole fractions of the components of the mixture in the polymer-rich phase
- \(y_i \): mole fractions of the components of the mixture in the solvent-rich phase
- \(z_i \): mole fractions of the components of the mixture in the feed

Greek characters

- \(\varepsilon \): depth of the minimum in the pair potential, J/mol
- \(\Delta M \): percent mean relative deviation
- \(\varepsilon_{ij} \): \(i,j \)-pair parameter \(\varepsilon \), J/mol
- \(\eta \): packing fraction
- \(\gamma_a \): corrective parameter for the polymer
- \(\gamma_{i,L}^{\text{CALC}} \): pure component calculated saturated liquid volume for the \(i \)th datum, cm\(^3/\text{mol} \)
- \(\gamma_{i,L}^{\text{EXP}} \): pure component experimental saturated liquid volume for the \(i \)th datum, cm\(^3/\text{mol} \)
- \(\rho \): Density
- \(\rho_{i,L}^{\text{CALC}} \): pure component calculated single-phase density for the \(i \)th datum, mol/cm\(^3 \)
- \(\rho_{i,L}^{\exp} \): pure component experimental single-phase density for the \(i \)th datum, mol/cm\(^3 \)
- \(\sigma \): separation distance between segment centers at the minimum of the pair potential, Å
- \(\sigma_{ij} \): \(i,j \)-pair parameter \(\sigma \), Å
- \(\phi \): ratio of the solvent-rich phase to the feed
- \(\phi_i \): fugacity coefficient of component \(i \) in the mixture
- \(\phi_{i,L}^{\text{CALC}} \): fugacity coefficient of component \(i \) in the vapor phase

The nomenclature includes various parameters and constants commonly used in the context of chemical engineering, particularly in the study of multicomponent systems and polymer-fluid interactions. This includes parameters for the equation of state, binary interaction parameters, characteristic properties of components, and experimental data used in regression analyses. The Greek characters represent physical properties such as density, depth of the minimum in the pair potential, and packing fraction, among others.
systems, i.e. both the lower critical solution temperature (LCST) and the upper critical solution temperature (UCST) behavior.

Cubic equations of state are not useful to this aim, as was already shown by Fermeglia, Bertucco and Patrizio (1997). Also among the molecular-based thermodynamic models, the most commonly used Flory–Huggins theory (Flory, 1953) is not suitable to explain the complex liquid behavior displayed by polymer mixtures. One attempt of describing compressibility effects has been done by introducing the free volume concept in the Compressible-Lattice models (Sanchez & Lacombe, 1976, 1978). Other variations of the Lattice-Fluid model have been developed (High & Danner, 1989, 1990; Panayioutou & Vera, 1982) but all these theories ignore the continuous nature of the real polymer configurations. Recently, a number of statistical–mechanical equations of state, based on a more physically reasonable Continuous-Space theories of polymer mixtures have been developed (Chapman, Jackson & Gubbins, 1988; Chiew, 1990; Dickman & Hall, 1986; Honnel & Hall, 1989). In these relatively simple models, a molecule is represented by a series of freely jointed tangent hard spheres, the hard-sphere chain, which is able to take into account the complex phase behavior of real polymer systems including excluded volume effects and segment connectivity.

Among them is the perturbed hard-sphere chain (PHSC) equation of state, which is based on a modified Chiew equation of state for athermal hard-spheres. This model is applicable to fluids containing small or large molecules, because the effective hard-sphere diameter and attractive energy parameters are theoretically based functions of temperature (Song & Mason, 1991). Moreover, previous works (Song, Lambert & Prausnitz, 1994; Song, Hino, Lambert & Prausnitz, 1996) have demonstrated that the PHSC equation of state successfully reproduces all types of phase equilibria experimentally observed in binary mixtures containing polymers, including the lower critical solution temperature (LCST), the upper critical solution temperature (UCST), or both. Calculated liquid–liquid coexistence curves were found to be in good agreement with experiments for several binary mixtures containing polymers.

The primary purpose of this paper is to extend the use of the PHSC EOS to multicomponent mixtures containing molecules with large differences in size and interactions, and to describe with the same set of parameters a wide range of process conditions. In particular, this paper focuses on ternary systems containing polymer, solvent and antisolvent, because of the complexity of the phase behavior of these three-phase systems of recent industrial interest.

Although a systematic investigation of the influence of a supercritical fluid on the phase behavior of polymer systems has already been made (Irani & Cozewith, 1986; Seckner et al., 1988; Kennis, De Loos & De Swann Arons, 1990; Bungert et al., 1997) and the physical basis of observed experimental phenomena is well understood, experimental investigation in an extended range of temperature and composition have been carried out only recently. Furthermore, few systems have been experimentally considered and a complete characterization in terms of multicomponent systems is available only for the system polystyrene–cyclohexane–carbon dioxide system (Behme, Bungert, Sadowski & Arlt, 1998). As a consequence, we have considered this case as the reference system for showing how a new generation equation of state can help in solving the problem of phase equilibria calculations under wide process conditions in the presence of a complex phase behavior.

2. Theory

2.1. Pure components

The equation of state considered in this paper is the simplified PHSC EOS (Song et al., 1996). It takes the hard sphere chains as its reference system, in the form of the Chiew equation of state (Chiew, 1990), derived from the Percus–Yevick integral-theory coupled with chain connectivity (and modified by the introduction of the Carnahan–Starling radial distribution function of hard spheres at contact), and a van der Waals attractive term as the perturbation. The EOS in terms of pressure is the following:

$$\left(\frac{P}{\rho kT}\right) = 1 + r^2 b \rho g(d^+) - (r - 1)[g(d +) - 1] - \frac{r^2 a \rho}{kT},$$

where P is the pressure, T the absolute temperature, $\rho = N/V$ the number density, N the number of molecules, V the volume of the system, k the Boltzmann’s constant, d the hard-sphere diameter and $g(d +)$ the pair radial distribution function of hard spheres at contact. The three segment parameters r, a and b have all a direct physical meaning: r is the number of segments (hard spheres) per molecule, a reflects the attractive forces between two non-bonded segments and b is the Van der Waals covolume per segment. The effective hard sphere diameter b and the attractive-energy parameter a, according to the method of Song and Mason (1991), can be expressed in terms of constants associated with intermolecular forces, and be represented by two theoretically based functions of temperature:

$$a(T) = \frac{2\pi}{3} \sigma^3 \varepsilon F_a(kT/\varepsilon),$$

$$b(T) = \frac{2\pi}{3} \sigma^3 F_b(kT/\varepsilon),$$

where ε and σ are pair-potential parameters: ε is the depth of the minimum in the pair potential and σ is
the separation distance between segment centers at this minimum.

In Eqs. (2) and (3) \(F_a \) and \(F_b \) are expressed by empirical equations determined from thermodynamic properties of argon and methane over a large range of temperature and density:

\[
F_a(kT/\varepsilon) = 1.8681 \exp \left[-0.0619 \left(\frac{kT}{\varepsilon} \right) \right] \\
+ 0.6715 \exp \left[-1.7317 \left(\frac{kT}{\varepsilon} \right)^{3/2} \right],
\]

\[
F_b(kT/\varepsilon) = 0.7303 \exp \left[-0.1649 \left(\frac{kT}{\varepsilon} \right) \right] \\
+ 0.2697 \exp \left[-2.3973 \left(\frac{kT}{\varepsilon} \right)^{2/3} \right].
\]

In summary, each pure component has three segment-based parameters: \(\sigma, \varepsilon \) and \(r \), which can be combined to give a more useful set of parameters directly related to size, shape and energetic interactions of the molecules of the fluid considered. This may be done by defining a characteristic volume, \(V^* \):

\[
V^* = \frac{(\pi/6)\sigma^3 N_A}{\varepsilon},
\]

where \(N_A \) is Avogadro’s constant; a characteristic surface area, \(A^* \):

\[
A^* = \pi \sigma^2 N_A
\]

and a characteristic “cohesive” energy, \(E^* \):

\[
E^* = r(\varepsilon/k)R_g,
\]

where \(R_g \) is the gas constant.

The PHSC EOS for a pure polymer can be simplified further if the molecular weight is very high (as suggested by Song et al., 1996). If \(\rho_r = r \rho \) is the segment-density of the polymer, Eq. (1) can be rewritten as

\[
\left(\frac{P}{\rho_r kT} \right) = 1 + b \rho_r g(d^+) - \left(1 - \frac{1}{r} \right) g(d^+) - \frac{a \rho_r}{kT}.
\]

For polymers, as long as \(r \) is large, one can neglect the \(1/r \) term and use a simpler form of the equation:

\[
\left(\frac{P}{\rho_r kT} \right) = 1 + b \rho_r g(d^+) - g(d^+) - \frac{a \rho_r}{kT}.
\]

Moreover (Song et al., 1994), since both \(r \) and \(M \) (molecular weight) have high numerical values for polymers, the ratio \(r/M \) can be considered as a more representative parameter. Accordingly, the characteristic parameters of the pure fluid on a segment-basis become \(r/M, \sigma, \varepsilon \) on a molecule basis we have

\[
V_0 = \frac{\pi}{6(r/M)M_0 \sigma^3 N_A},
\]

\[
A_0^* = \pi (r/M)M_0 \sigma^2 N_A,
\]

\[
E_0^* = (r/M)(\varepsilon/k)M_0 R_g,
\]

where \(M_0 \) is the repeat unit’s molecular weight.

2.2. Mixtures

Extension of Eq. (1) to mixtures is straightforward:

\[
\left(\frac{P}{\rho kT} \right) = 1 + \rho \sum_{ij} x_i x_j r_i r_j b_{ij} g_{ij}(d_{ij}^+),
\]

\[
- \sum_i x_i \left(r_i - 1 \right) [g_{ii}(d_{ii}^+) - 1] - \frac{\rho}{kT} \sum_{ij} x_i x_j r_i r_j a_{ij},
\]

where \(x_i = N_i/N \) is the number fraction of molecules, \(r_i \) the number of segments for the \(i \)-th component and \(g_{ij}(d_{ij}^+) \) the \(ij \)-pair radial distribution function of hard sphere mixtures at contact. Because of the rigorously theoretical nature of the equation of state, no mixing rules are required for the reference term, and the attractive term only requires van der Waals one-fluid mixing rules. The mixture parameters \(a_{ij} \) and \(b_{ij} \) needed for each binary pair included in the mixture can be in fact obtained by extension of Eqs. (2) and (3):

\[
a_{ij} = \frac{2(\pi/3)\sigma_{ij}^3 \varepsilon_{ij}}{r_{ij} F_a(kT/\varepsilon_{ij})},
\]

\[
b_{ij} = \frac{2(\pi/3)\sigma_{ij}^3 \varepsilon_{ij}}{r_{ij} F_b(kT/\varepsilon_{ij})},
\]

where \(F_a \) and \(F_b \) are defined by Eqs. (4) and (5). No combining rule is needed for \(\sigma \) as a consequence of the additivity of the hard-sphere diameters:

\[
\sigma_{ij} = \frac{\sigma_{ij} + \sigma_{ji}}{2}.
\]

For the energetic parameter \(\varepsilon \) we set

\[
\varepsilon_{ij} = \sqrt{\varepsilon_i \varepsilon_j (1 - k_{ij})},
\]

where \(k_{ij} \) is one adjustable parameter introduced for each binary pair included in the mixture.

The required mathematical expression for \(g_{ij}(d_{ij}^+) \) is given by the Boublik–Mansoori–Carnahan–Starling (BMCS) (Boublik, 1970; Mansoori, Carnahan, Starling & Leland, 1971) equation for hard-sphere mixtures:

\[
g_{ij}(\eta, \xi_{ij}) = \frac{1}{1 - \eta} + \frac{3}{2} \frac{\xi_{ij}}{(1 - \eta)\xi_{ij}} + \frac{1}{2} \frac{\xi_{ij}^2}{(1 - \eta)\xi_{ij}}
\]
with
\[\eta = \rho \frac{m}{4} \sum_{i} x_i r_i b_i, \]
\[\varepsilon_{ij} = \left(\frac{b_i b_j}{b_{ij}} \right)^{1/3} \rho \frac{m}{4} \sum_{k} x_k r_k b_k^{2/3}. \]

A summary of the development of the analytical expressions of all the properties of interest is reported by Fermeglia, Bertucco and Bruni (1998); here only the modifications to the model needed for describing liquid–liquid equilibria of polymer systems are described. Finally, one problem observed in applying the PHSC EOS to liquid–liquid equilibria of polymer solutions is that calculated LCST values are significantly lower than experimental. As suggested by Hino, Song and Prausnitz (1996), this is caused by the oversimplification of the perturbation term of the model, which neglects the radial distribution function and chain connectivity and is based on the mean field assumption, that fails for dilute polymer solutions such as those near the LCST. To take into account this observation, the empirical correction proposed by Hino et al. (1996) is introduced into the perturbation term of the PHSC EOS to reduce the polymer contribution \(r_p^a \rho_p \), representing the attractive interaction between two polymer molecules in a dilute solution. The correction is equivalent to the substitution of \(r_p \) with
\[r_p^a = r_p v_B \quad (v_b \leq 1), \]
i.e. to reduce the polymer's chain length, only in the perturbation term of the equation.

3. Calculation methods

3.1. Pure components

A set of three molecular parameters has been obtained by fitting experimental data for each pure component considered in this work. For pure volatile fluids the three molecular parameters \(V^a, A^a \) and \(E^a \) have been fitted to vapor pressure and saturated liquid density data as functions of temperature. For pure polymer liquids parameters \(V^b, A^b \) and \(E^b \) have been regressed from pressure–volume–temperature (PVT) data.

Details on the fitting procedure are given elsewhere (Fermeglia et al., 1998): the Levenberg–Marquardt algorithm, in the modification of the IMSL routine ZXSSQ, has been used to find a set of the three which minimizes the objective function \(OF \) defined as follows:
\[OF = w_1 \sum_i \left(\frac{P_i^{\text{Exp}} - P_i^{\text{Calc}}}{P_i^{\text{Exp}}} \right)^2 + w_2 \sum_i \left(\frac{V_i^{\text{Exp}} - V_i^{\text{Calc}}}{V_i^{\text{Exp}}} \right)^2 + w_3 \sum_i \left(\frac{\rho_i^{\text{Exp}} - \rho_i^{\text{Calc}}}{\rho_i^{\text{Exp}}} \right)^2. \]

Note that for pure polymers the properties considered are only single phase PVT data, while for pure volatile fluids they include also the vapor pressure and the saturated liquid volume, weighted according to \(w_i \). The best parameters were determined by fitting Eq. (1) or Eq. (10) for pure volatile fluids and for polymers, respectively, to the pure component properties.

The algorithms used for calculating the density and the pure component equilibrium from Eqs. (1) and (10) can be found in Patrizio (1995).

3.2. Mixtures

Mixture calculation algorithms are described according to the particular phase behavior.

3.2.1. Vapor–liquid equilibrium

For each binary pair included in the multicomponent mixtures considered in this work, one binary interaction parameter \(k_{ij} \) was estimated by fitting binary vapor–liquid equilibrium (VLE) data. The fitting procedure used is described by Fermeglia et al. (1998), Bruni (1997) and by Favari (1998) and is based on the minimization of the following objective function:
\[OF = \sum_{i=1}^{NP} \left(\frac{P_i^{\text{Calc}} - P_i^{\text{Exp}}}{P_i^{\text{Exp}}} \right)^2 \]
where \(NP \) is the number of equilibrium data for a given system. For each value of the binary parameter given by the external convergence algorithm, a bubble point calculation at constant temperature is performed to recalculate the objective function. Extension of the computer program to multicomponent mixtures has been developed to perform predictive bubble point calculations.

3.2.2. Liquid–liquid equilibrium

For binary mixtures of normal fluids no fitting procedure for determining the binary interaction parameter \(k_{ij} \) from liquid–liquid equilibrium (LLE) data was necessary since the binary interaction parameter obtained from VLE was directly used in flash calculations.

For binary mixtures containing polymers, parameters \(k_{ij} \) and \(v_b \) have been adjusted to match liquid–liquid equilibrium data, because extrapolation of their value from VLE data was not satisfactory.

A liquid–liquid isothermal flash calculation routine has been implemented for multicomponent mixtures of both normal fluids with polymers. In the first case, the Gibbs tangent plane stability test (Wasylkiewicz, Sridhar, Doherty & Malone, 1996) was used, following the Michelsen’s approach (Michelsen, 1982a), to provide good initial estimates for the subsequent flash calculation. In the second case, good initial estimates of the LLE were generated starting far from the critical point.
where convergence is much faster and stable, and slowly approaching the critical zone.

The flash problem at constant temperature and pressure, if \(m \) is the number of components, requires the solution of a system of \(m \) equilibrium conditions, \(m \) material balances and a consistency constraint:

\[
K_i(x, y)x_i - y_i = 0,
\]

\[
(1 - \phi)x_i + \phi y_i - z_i = 0,
\]

\[
\sum_{i=1}^{m} x_i - \sum_{i=1}^{m} y_i = 0,
\]

where \(\phi \) is the ratio of the solvent-rich phase to the feed, \(x_i, y_i \) and \(z_i \) are the mole fractions of the components of the mixture, respectively, in the polymer-rich phase, in the solvent-rich phase and in the feed, \(K_i \) is the separation factor of the components of the mixture.

The system can also be rewritten as follows:

\[
K_i = \frac{\varphi_i(x)}{\varphi_i(y)},
\]

\[
x_i = \frac{z_i}{1 + (K_i - 1)\phi},
\]

\[
y_i = \frac{K_i z_i}{1 + (K_i - 1)\phi},
\]

\[
\sum_{i=1}^{m} \frac{z_i (K_i - 1)}{1 + (K_i - 1)\phi},
\]

where \(\varphi_i \) is the fugacity coefficient of component \(i \) in the mixture.

This system can be solved in a traditional fashion by direct substitution (Henley & Rosen, 1969; Michelsen, 1982b), but this procedure becomes unreliable for solutions with large-size differences between the solvent and the solute molecules since the \(K \)-factors are strongly composition dependent and gives rise to instability in the solution.

In this paper the flash equations were solved simultaneously by a Newton–Raphson iterative procedure with a decomposition algorithm (Chen, Duran & Radosz, 1993).

3.2.3. **Vapor–liquid–liquid equilibria**

The three-phase calculations performed in this work do not involve any parameter estimation procedure: only calculations at fixed parameters are presented.

For a ternary mixture, the specification of the temperature and the pressure of the system is sufficient to complete the definition of the problem. For a binary mixture, fixing the temperature saturates the degrees of freedom of the system, so the pressure must be considered a dependent variable such as the phase compositions. At a given temperature the numerical procedure implemented in this paper starts from the feed at the bubble point and performs a liquid–liquid flash calculation. The composition of the two liquid phases and a good initial estimate of the vapor phase composition (as shown below) is obtained. Subsequently, a bubble point calculation for the same initial feed providing the calculated vapor phase composition and the pressure of the system is carried out. If the resulting pressure does not agree, within the desired tolerance, with the previous assumption, the procedure is repeated, starting with the last value of the pressure. To generate a good initial estimate of the vapor-phase composition for the bubble point calculation, as suggested by Michelsen (1998), we consider that, at equilibrium, the following relationships between the fugacities in the three phases must be respected:

\[
\ln f_i^V = \ln f_i^{Li} = \ln f_i^{Lo}.
\]

As a first approximation one can assume \(\varphi_i^V = 1 \) in evaluating Eq. (32). Defining the ratios \(W_i \) as

\[
W_i = f_i^V/P = f_i^{Li}/P = f_i^{Lo}/P
\]

we obtain an estimate of the vapor phase composition as

\[
y_i = W_i/\sum W_i
\]

using the values of fugacities \(f_i^{Li} \) and \(f_i^{Lo} \) previously determined by the liquid–liquid flash calculation.

4. Results

4.1. **Pure components**

Table 1 summarizes the 21 pure polymers investigated, along with the temperature and pressure range of the PVT data considered. The database used in this work is exactly the same as that of a previous paper (Song et al., 1994), where a previous version of the PHSC model was considered. Table 1 also reports the numerical values of parameters obtained by fitting the experimental data for pure polymers. The root-mean-square relative deviation (RMSD\%) reported in Table 1 between calculated and experimental values is defined for a generic property \(M \) as

\[
\text{RMSD} = \frac{100}{n} \sum \frac{\left(M_i^{\text{EXP}} - M_i^{\text{CALC}} \right)^2}{\text{NDAT} (M_i^{\text{EXP}})}. \tag{35}
\]

In Table 1, the RMSD\% refers to density values calculated in the range of \(T \) and \(P \) reported in columns 2 and 3. Table 1 shows that the numerical values of RMSD is of the order of 0.04–0.5%, well within the experimental uncertainty.

Fig. 1 shows a comparison between the experimental data and the data calculated by means of the proposed method, by using the parameters reported in Table 1 for polystyrene.
Table 1
List of the pure polymers investigated along with the pressure and temperature range of the PVT data used. Columns 4–6 report the numerical values of the pure component parameters calculated in this work and the last column reports the RMSD % deviation in density relative to these parameters.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Pressure range (kPa)</th>
<th>Temperature range (K)</th>
<th>E^* (bar cm3/mol)</th>
<th>A^* (106 cm3/mol)</th>
<th>V^* (cm3/mol)</th>
<th>RMSD% (Eq. (35))</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-density poly ethylene (HDPE)</td>
<td>100. – 2.E + 5</td>
<td>415.25–472.85</td>
<td>37.383</td>
<td>3.8342</td>
<td>24.442</td>
<td>0.136</td>
</tr>
<tr>
<td>Low-density poly ethylene (LDPE)</td>
<td>0. – 1.E + 3</td>
<td>413.15–473.15</td>
<td>41.619</td>
<td>4.0272</td>
<td>24.242</td>
<td>0.143</td>
</tr>
<tr>
<td>Poly propylene (PP)</td>
<td>0. – 1.96.E + 5</td>
<td>446.66–571.63</td>
<td>38.828</td>
<td>4.9885</td>
<td>39.117</td>
<td>0.228</td>
</tr>
<tr>
<td>Iso poly 1 butene (i-PB)</td>
<td>0. – 1.96.E + 5</td>
<td>406.99–514.08</td>
<td>66.280</td>
<td>7.2485</td>
<td>49.770</td>
<td>0.273</td>
</tr>
<tr>
<td>Poly isotene (PIB)</td>
<td>0. – 1.E + 5</td>
<td>325.95–383.15</td>
<td>76.826</td>
<td>7.3034</td>
<td>45.377</td>
<td>0.0828</td>
</tr>
<tr>
<td>Poly 4 methyl 1 pentane (PMP)</td>
<td>0. – 1.96.E + 5</td>
<td>449.65–502.05</td>
<td>95.677</td>
<td>10.671</td>
<td>77.536</td>
<td>0.334</td>
</tr>
<tr>
<td>Poly styrene (PS)</td>
<td>1.E + 2 – 2.E + 5</td>
<td>388.55–468.75</td>
<td>128.880</td>
<td>110.529</td>
<td>74.483</td>
<td>0.133</td>
</tr>
<tr>
<td>Poly orto metylstirene (POMS)</td>
<td>1.E + 2 – 1.8.E + 5</td>
<td>412.55–470.85</td>
<td>151.710</td>
<td>13.301</td>
<td>86.317</td>
<td>0.0904</td>
</tr>
<tr>
<td>Poly cis 1,4 butadiene (BR)</td>
<td>1.01E + 2 – 2.83.E + 5</td>
<td>277.15–328.35</td>
<td>87.180</td>
<td>7.8358</td>
<td>43.303</td>
<td>0.0781</td>
</tr>
<tr>
<td>Poly vinyl chloride (PVC)</td>
<td>0. – 2.E + 5</td>
<td>373.35–423.15</td>
<td>71.398</td>
<td>5.638</td>
<td>33.372</td>
<td>0.174</td>
</tr>
<tr>
<td>Poly vinyl acetate (PVAC)</td>
<td>0. – 8.E + 4</td>
<td>308.15–373.15</td>
<td>108.240</td>
<td>3.4226</td>
<td>52.557</td>
<td>0.0409</td>
</tr>
<tr>
<td>Iso poly methyl metacrilate (i-PMMA)</td>
<td>1.E + 2 – 2.E + 5</td>
<td>290.35–342.15</td>
<td>130.390</td>
<td>10.357</td>
<td>63.23</td>
<td>0.144</td>
</tr>
<tr>
<td>Poly methyl metacrilate (PMMA)</td>
<td>1.E + 2 – 2.E + 5</td>
<td>386.65–422.15</td>
<td>134.480</td>
<td>10.581</td>
<td>62.519</td>
<td>0.0425</td>
</tr>
<tr>
<td>Poly butyl metacrilate (PBMMA)</td>
<td>1.E + 2 – 2.E + 5</td>
<td>295.65–472.65</td>
<td>162.460</td>
<td>150.102</td>
<td>91.69</td>
<td>0.246</td>
</tr>
<tr>
<td>Poly cyclohexyl metacrilate (PHCMA)</td>
<td>1.E + 2 – 2.E + 5</td>
<td>382.75–472.05</td>
<td>188.690</td>
<td>160.709</td>
<td>105.65</td>
<td>0.127</td>
</tr>
<tr>
<td>Poly ethylene terefolate (PETP)</td>
<td>0. – 1.96.E + 5</td>
<td>551.45–615.45</td>
<td>276.240</td>
<td>19.099</td>
<td>106.65</td>
<td>0.383</td>
</tr>
<tr>
<td>Poly carbonate (PC)</td>
<td>0. – 1.77.E + 5</td>
<td>429.88–610.01</td>
<td>301.810</td>
<td>24.048</td>
<td>148.74</td>
<td>0.195</td>
</tr>
<tr>
<td>Poly ether ether ketone (PEEK)</td>
<td>0. – 2.E + 5</td>
<td>619.35–670.95</td>
<td>367.250</td>
<td>27.584</td>
<td>165.94</td>
<td>0.456</td>
</tr>
<tr>
<td>Poly sulfone (PSF)</td>
<td>0. – 1.96.E + 5</td>
<td>474.95–644.45</td>
<td>586.840</td>
<td>43.663</td>
<td>273.72</td>
<td>0.159</td>
</tr>
<tr>
<td>Poly tetrafluoro ethylene (PTFE)</td>
<td>0. – 3.92.E + 4</td>
<td>603.55–645.55</td>
<td>48.573</td>
<td>5.3862</td>
<td>29.118</td>
<td>0.282</td>
</tr>
<tr>
<td>Poly tetra hydro furane (PT)</td>
<td>0. – 5.88.E + 4</td>
<td>337.75–443.98</td>
<td>83.991</td>
<td>8.5731</td>
<td>54.77</td>
<td>0.126</td>
</tr>
</tbody>
</table>

The physical meaning of the model parameters allows correlating them with the molecular structure. Expressions for the V_0^*, A_0^* and E_0^* parameters of the model have been developed as functions of the van der Waals area and volume, for V_0^* and A_*, and as a function of the cohesive energy, for E_0^* (Favari, 1998). As previously observed for the original model (Song et al., 1994), these correlations can provide estimates for EOS parameters of those polymers for which PVT data are unavailable. Since this paper focuses on multicomponent mixtures, the regressed pure component parameters reported in Table 1 will be used.

4.2. Binary mixtures

4.2.1. Vapor–liquid equilibrium

The systems investigated are summarized in Table 5 of the appendix, along with the literature references. For components subcritical at the system temperature (except polymers) one vapor pressure datum at the same temperature has been used to recalculate the energetic parameter by constraining the calculated vapor pressure to be equal to the experimental one, thus avoiding any systematic shift in the pure component vapor pressure. In a previous paper it was shown that the performance of the model can be substantially improved by this procedure (Fermeglia et al., 1998).

In order to test the correlating capabilities of the model when applied to mixtures containing components...
of different size, binary systems CO$_2$-solvent, polymer-solvent and CO$_2$-polymer have been considered. The solvent–solvent calculations presented here were performed to obtain the necessary interaction parameter for the multicomponent mixtures.

At a given temperature, for each binary pair, the k_{ij} parameter has been determined from the experimental VLE data referenced in Table 5. Table 2 reports the numerical value of the k_{ij} parameters obtained, along with the evaluation indexes RMSD (Eq. (35)) and % m.r.d. (percent mean relative deviation), defined as follows:

$$\Delta M = \frac{100}{n} \left| \frac{M_i^{\text{EXP}} - M_i^{\text{CALC}}}{M_i^{\text{EXP}}} \right|,$$

(Eq. (36))

where M is a generic property and n is the number of experimental data considered.

In Table 2a, the marked systems (*) are those with only one subcritical component at the system temperature; in these cases the recalculation of the energetic parameter of the pure components has been performed only for the subcritical component. In Table 2b, we have indicated with (*) those systems on which the k_{ij} value has been fitted. In the case of the remaining systems a predictive calculation parameter has been performed, at the fixed value of k_{ij}.

Some correlation results are depicted in Fig. 2 for the CO$_2$–solvent systems.

The results reported in Table 2 allow to conclude that the binary interaction parameter increases with increasing molecular weight of the solvent, making it impossible to assume a single k_{ij} value for these systems, as can be made for binary mixtures of refrigerants and binary mixtures of hydrocarbons (Fermeglia et al., 1998). Furthermore, the binary interaction parameter shows an evident monotonically increasing k_{ij} dependence of temperature, that suggests the opportunity of a linearization of the parameter. A model correction to take into account for the quadrupole moment of the CO$_2$ is probably necessary.

Table 2

Binary interaction parameters, along with the corresponding evaluation indexes (Eqs. (35) and (36)); 2a: carbon dioxide–solvent systems; 2b: polymer–solvent systems; 2c: carbon dioxide$_2$ – polymer systems

<table>
<thead>
<tr>
<th>System</th>
<th>T (K)</th>
<th>k_{ij}</th>
<th>% m.r.d</th>
<th>RMSD y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>p (Eq. (36))</td>
<td>(Eq. (35))</td>
</tr>
<tr>
<td>2a:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon dioxide-methane</td>
<td>*</td>
<td>230</td>
<td>0.1215</td>
<td>3.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*</td>
<td>270</td>
<td>0.1272</td>
</tr>
<tr>
<td>Carbon dioxide-propane</td>
<td>244.26</td>
<td>0.1649</td>
<td>2.65</td>
<td>0.00894</td>
</tr>
<tr>
<td></td>
<td>252.95</td>
<td>0.1610</td>
<td>2.06</td>
<td>0.02802</td>
</tr>
<tr>
<td></td>
<td>266.48</td>
<td>0.1677</td>
<td>2.01</td>
<td>0.01095</td>
</tr>
<tr>
<td></td>
<td>273.15</td>
<td>0.1888</td>
<td>3.44</td>
<td>0.01510</td>
</tr>
<tr>
<td>Carbon dioxide-n. pentane</td>
<td>277.65</td>
<td>0.1837</td>
<td>5.83</td>
<td>0.00496</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>311.04</td>
<td>0.1852</td>
<td>3.49</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>344.15</td>
<td>0.1909</td>
<td>3.05</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>377.59</td>
<td>0.2021</td>
<td>3.28</td>
</tr>
<tr>
<td>Carbon dioxide-n. hexane</td>
<td>*</td>
<td>313.15</td>
<td>0.1875</td>
<td>2.24</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>353.15</td>
<td>0.1957</td>
<td>3.22</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>393.15</td>
<td>0.2017</td>
<td>2.99</td>
</tr>
<tr>
<td>Carbon dioxide-n. octane</td>
<td>*</td>
<td>313.15</td>
<td>0.1977</td>
<td>4.99</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>328.15</td>
<td>0.1969</td>
<td>3.17</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>348.15</td>
<td>0.1991</td>
<td>4.86</td>
</tr>
<tr>
<td>Carbon dioxide-n. dodecane</td>
<td>*</td>
<td>298.15</td>
<td>0.1924</td>
<td>0.00418</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>308.15</td>
<td>0.1979</td>
<td>0.00406</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>318.15</td>
<td>0.2046</td>
<td>0.00396</td>
</tr>
<tr>
<td>Carbon dioxide-n. eicosane</td>
<td>*</td>
<td>323.25</td>
<td>0.2003</td>
<td>2.13</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>373.45</td>
<td>0.2041</td>
<td>2.16</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>473.15</td>
<td>0.2219</td>
<td>1.76</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>573.15</td>
<td>0.2611</td>
<td>0.84</td>
</tr>
<tr>
<td>Carbon dioxide-n. cyclohexane</td>
<td>*</td>
<td>344.3</td>
<td>0.2120</td>
<td>0.87694</td>
</tr>
</tbody>
</table>
Table 2 (continued)

<table>
<thead>
<tr>
<th>System</th>
<th>Molecular weight of polymer</th>
<th>T (K)</th>
<th>k_{ij}</th>
<th>% m.r.d. p (Eq. (36))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2b:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS–benzene</td>
<td></td>
<td>288.15</td>
<td>−0.02569</td>
<td>7.28</td>
</tr>
<tr>
<td></td>
<td>63 000 M_w</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>303.15</td>
<td>−0.02569</td>
<td>3.92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>318.15</td>
<td>−0.02569</td>
<td>4.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>333.15</td>
<td>−0.02569</td>
<td>3.84</td>
<td></td>
</tr>
<tr>
<td>PS–carbon tetrachloride</td>
<td></td>
<td>298.15</td>
<td>−0.03532</td>
<td>4.41</td>
</tr>
<tr>
<td>PS–chloroform</td>
<td></td>
<td>298.15</td>
<td>−0.0242</td>
<td>7.67</td>
</tr>
<tr>
<td></td>
<td>290 000 M_w</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>323.15</td>
<td>−0.0242</td>
<td>1.59</td>
<td></td>
</tr>
<tr>
<td>PS–cyclohexane</td>
<td></td>
<td>297.85–329.45</td>
<td>−0.03582</td>
<td>3.01</td>
</tr>
<tr>
<td>PIb–n. pentane</td>
<td></td>
<td>298.15</td>
<td>−0.05105</td>
<td>7.53</td>
</tr>
<tr>
<td>PVB–chloroform</td>
<td></td>
<td>298.15</td>
<td>−0.05105</td>
<td>7.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>333.15</td>
<td>−0.02972</td>
<td>5.79</td>
</tr>
<tr>
<td>PMMA–chloroform</td>
<td></td>
<td>323.15</td>
<td>−0.06097</td>
<td>3.59</td>
</tr>
<tr>
<td>BR–n. hexane</td>
<td></td>
<td>333.15</td>
<td>−0.05219</td>
<td>0.832</td>
</tr>
<tr>
<td>BR–chloroform</td>
<td></td>
<td>333.15</td>
<td>−0.02972</td>
<td>2.81</td>
</tr>
<tr>
<td>BR–cyclohexane</td>
<td></td>
<td>333.15</td>
<td>−0.02035</td>
<td>3.59</td>
</tr>
</tbody>
</table>

The results obtained for polymer–solvent systems confirm the good fitting capabilities of the PHSC EOS for this kind of systems, already shown elsewhere (Song et al., 1996; Hino et al., 1996), and the opportunity to assume for those mixtures a single value of k_{ij} with respect to temperature and to the polymer’s molecular weight.

Finally, for the polystyrene–CO$_2$ system (Table 2c), the difficulty in the regression is evident and only a semi quantitative description of the system is possible.

4.2.2. Liquid–liquid equilibrium

Table 5 lists the binary LLE systems investigated, together with the corresponding literature references.

In order to test the capabilities of the model to reproduce the liquid–liquid equilibrium (LLE) of binary mixtures containing components with large differences in molecular size, CO$_2$–solvent and polymer–solvent systems have been considered.

For CO$_2$–solvent systems, calculations were performed using only one interaction parameter k_{ij}, determined from VLE data fitting. The binary interaction parameter of Table 2 has been linearized with respect to temperature in order to extrapolate its value to liquid–liquid equilibrium temperatures. Fig. 3 shows the acceptable agreement between calculated and experimental points for the system CO$_2$–dodecane.

Further calculations and sensitivity analysis with respect to the pressure and to the k_{ij} parameter are reported elsewhere (Favari, 1998).

For polymer–solvent systems calculations have been performed with reference to the polystyrene–cyclohexane system, already considered in literature (Hino et al., 1996). Using two adjustable parameters ($k_{ij} = 0.0179$ and $v_B = 0.739$), the theoretical coexistence curves agree fairly well with experimental data, also for systems which exhibit both an UCST and a LCST behavior (Favari, 1998).

4.2.3. Vapor–liquid–liquid equilibrium

The system CO$_2$–dodecane is considered as an example of binary vapor–liquid–liquid (VLL) calculation. As for LLE, calculations have been performed using only one adjustable parameter k_{ij}, determined from VLE data fitting and extrapolated through the linearized function that relates k_{ij} to temperature. Fig. 4 presents three constant temperature VLE equilibrium curves, which exhibit, in a particular composition range, a liquid–liquid-phase separation. Increasing pressure, in such composition ranges, causes the vapor phase to disappear; decreasing temperature below the lowest value reported in Fig. 4 generates the separation of another solid phase, which cannot be represented by the model.
4.3. Multicomponent mixtures

4.3.1. Vapor–liquid equilibrium

Table 6 of the appendix lists the multicomponent systems investigated, along with the corresponding literature references. Calculations have been performed using only one adjustable parameter for each binary pair included in the mixture, determined from binary VLE data fitting. The multicomponent calculations can then be considered totally predictive. Tables 3 and 4 report the results obtained, respectively, for the systems C1–C3–C10 and CO$_2$–C3–C5–C8.

4.3.2. Liquid–liquid equilibrium

The ternary system polystyrene–cyclohexane–CO$_2$, for which experimental LLE and VLLE data are available (see Tables 5 and 6 for the reference), has been considered as a representative example of polymer–solvent-supercritical antisolvent system. As for all multicomponent calculations presented in this work, the binary interaction parameters have been determined by fitting binary data (LLE for the polystyrene–cyclohexane pair, VLE for the others). Therefore, the ternary
calculation can be considered fully predictive, and the corresponding results depend on the goodness of the binary data used.

The binary interaction parameters values have been determined as follows. For the polystyrene–cyclohexane pair, they were derived from LLE data and are those reported in the previous section of the paper. For the polystyrene–CO$_2$ system, the same value for the v_B parameter of the previous binary pair must be used to avoid discontinuity in the polystyrene behavior in the ternary mixture. The k_{ij} parameter has been readjusted by fitting it to the same VLE data presented in Table 5, at the fixed value of $v_B = 0.739$ (only the two temperatures $T = 413.2$ and 453.2 were considered for the fitting procedure, and the obtained k_{ij} value was linearized as a function of temperature, in order to extrapolate it to the LLE temperatures; the final value is 0.3786). For the CO$_2$–cyclohexane system, considering the increasing trend of k_{ij} with temperature for all the CO$_2$–solvent systems, a similar slope has been used for the extrapolation; the resulting value of k_{ij} for this binary pair is 0.24.

Fig. 5 compares theoretical equilibrium pressures, as a function of the two liquid-phase composition, with experimental data. We note that the PHSC EOS (as already demonstrated for the SAFT model, Behme et al., 1998) is able to represent at least qualitatively that a 2.6% rise in the total content of carbon-dioxide of the system has the same separation effect of an increase of 25°C in temperature; so, the same phase-separation process can be carried out under less severe conditions, in terms of polymer thermal degradation and of energetic expense.

4.3.3. Vapor–liquid–liquid equilibrium

Figs. 6 and 7 show the VLLE calculations performed for the same polymer–solvent-supercritical antisolvent system considered in the previous section, using the same model parameters. Fig. 6 compares the obtained theoretical phase diagram with experimental points. Using the same values of the pure component and of the binary parameters, the model is able to reproduce simultaneously four different regions of the phase-space of the

<table>
<thead>
<tr>
<th>T (K)</th>
<th>p^b_{exp} (bar)</th>
<th>p^b_{calc} (bar)</th>
<th>y^1_{exp}</th>
<th>y^1_{calc}</th>
<th>y^2_{exp}</th>
<th>y^2_{calc}</th>
<th>y^3_{exp}</th>
<th>y^3_{calc}</th>
<th>y^4_{exp}</th>
<th>y^4_{calc}</th>
</tr>
</thead>
<tbody>
<tr>
<td>310.93</td>
<td>30.8</td>
<td>31.44</td>
<td>0.6846</td>
<td>0.72945</td>
<td>0.2751</td>
<td>0.25307</td>
<td>0.0361</td>
<td>0.01709</td>
<td>0.00420</td>
<td>0.00035</td>
</tr>
<tr>
<td>310.93</td>
<td>32.5</td>
<td>32.79</td>
<td>0.6883</td>
<td>0.73855</td>
<td>0.2732</td>
<td>0.2732</td>
<td>0.0341</td>
<td>0.01653</td>
<td>0.00440</td>
<td>0.00035</td>
</tr>
<tr>
<td>310.93</td>
<td>34.2</td>
<td>34.34</td>
<td>0.7125</td>
<td>0.74771</td>
<td>0.2554</td>
<td>0.2732</td>
<td>0.0295</td>
<td>0.01594</td>
<td>0.00260</td>
<td>0.00035</td>
</tr>
<tr>
<td>324.82</td>
<td>35.8</td>
<td>36.37</td>
<td>0.6525</td>
<td>0.68590</td>
<td>0.2994</td>
<td>0.2994</td>
<td>0.0392</td>
<td>0.02480</td>
<td>0.00890</td>
<td>0.00074</td>
</tr>
<tr>
<td>324.82</td>
<td>37.8</td>
<td>38.83</td>
<td>0.6601</td>
<td>0.70036</td>
<td>0.2910</td>
<td>0.2910</td>
<td>0.0405</td>
<td>0.02359</td>
<td>0.00840</td>
<td>0.00074</td>
</tr>
<tr>
<td>324.82</td>
<td>40.0</td>
<td>41.03</td>
<td>0.6710</td>
<td>0.71240</td>
<td>0.2852</td>
<td>0.2852</td>
<td>0.0388</td>
<td>0.02268</td>
<td>0.00500</td>
<td>0.00074</td>
</tr>
<tr>
<td>338.71</td>
<td>41.6</td>
<td>41.38</td>
<td>0.6252</td>
<td>0.64154</td>
<td>0.3193</td>
<td>0.3193</td>
<td>0.0506</td>
<td>0.03431</td>
<td>0.00490</td>
<td>0.00148</td>
</tr>
<tr>
<td>338.71</td>
<td>44.4</td>
<td>43.91</td>
<td>0.6288</td>
<td>0.65498</td>
<td>0.3114</td>
<td>0.3114</td>
<td>0.0532</td>
<td>0.03298</td>
<td>0.00660</td>
<td>0.00147</td>
</tr>
<tr>
<td>338.71</td>
<td>47.3</td>
<td>47.40</td>
<td>0.6411</td>
<td>0.67227</td>
<td>0.3046</td>
<td>0.3046</td>
<td>0.0477</td>
<td>0.03160</td>
<td>0.00660</td>
<td>0.00148</td>
</tr>
<tr>
<td>352.59</td>
<td>47.8</td>
<td>49.08</td>
<td>0.5477</td>
<td>0.61537</td>
<td>0.3676</td>
<td>0.3676</td>
<td>0.0686</td>
<td>0.04509</td>
<td>0.01610</td>
<td>0.00278</td>
</tr>
<tr>
<td>352.59</td>
<td>50.6</td>
<td>51.95</td>
<td>0.5749</td>
<td>0.62407</td>
<td>0.3453</td>
<td>0.3453</td>
<td>0.0598</td>
<td>0.04371</td>
<td>0.02000</td>
<td>0.00276</td>
</tr>
<tr>
<td>352.59</td>
<td>54.5</td>
<td>59.87</td>
<td>0.5892</td>
<td>0.62500</td>
<td>0.3166</td>
<td>0.3166</td>
<td>0.0706</td>
<td>0.04080</td>
<td>0.02260</td>
<td>0.00313</td>
</tr>
<tr>
<td>366.48</td>
<td>53.1</td>
<td>53.27</td>
<td>0.5281</td>
<td>0.56752</td>
<td>0.3794</td>
<td>0.3794</td>
<td>0.0761</td>
<td>0.0553</td>
<td>0.01640</td>
<td>0.00491</td>
</tr>
<tr>
<td>380.7</td>
<td>58.2</td>
<td>59.67</td>
<td>0.4823</td>
<td>0.53399</td>
<td>0.4003</td>
<td>0.4003</td>
<td>0.0958</td>
<td>0.07430</td>
<td>0.02160</td>
<td>0.00843</td>
</tr>
<tr>
<td>349.26</td>
<td>63.7</td>
<td>64.76</td>
<td>0.4502</td>
<td>0.49327</td>
<td>0.4084</td>
<td>0.4084</td>
<td>0.1054</td>
<td>0.09172</td>
<td>0.02600</td>
<td>0.01367</td>
</tr>
</tbody>
</table>
Table 5
The systems investigated are summarized along with the literature references

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane–Propane</td>
<td>PS–Benzene</td>
<td>CO$_2$–Methane</td>
<td>CO$_2$–Dodecane</td>
<td>Methane–Propane–Decane</td>
</tr>
<tr>
<td>Methane–Hexane</td>
<td>PS–Carbon tetrachloride</td>
<td>CO$_2$–Propane</td>
<td>CO$_2$–Dodecane</td>
<td>Methane–Propane–Decane</td>
</tr>
<tr>
<td>Methane–Decane</td>
<td>PS–Chloroform</td>
<td>CO$_2$–Pentane</td>
<td>CO$_2$–Dodecane</td>
<td>CO$_2$–Dodecane</td>
</tr>
<tr>
<td>Propane–Pentane</td>
<td>PS–Cyclohexane</td>
<td>CO$_2$–Octane</td>
<td>CH$_3$–Dodecane</td>
<td>CO$_2$–Dodecane</td>
</tr>
<tr>
<td>Propane–Octane</td>
<td>Polystyrene–Decane</td>
<td>CO$_2$–Dodecane</td>
<td>CH$_2$=CH$_2$–Dodecane</td>
<td>Polystyrene–Carbon Tetrachloride–Chloroform</td>
</tr>
<tr>
<td>Carbon tetrachloride–chloroform</td>
<td></td>
<td></td>
<td>CH$_3$–Dodecane</td>
<td>Carbon dioxide–polystyrene–Cyclohexane–polystyrene</td>
</tr>
</tbody>
</table>

Table 6
Multicomponent systems investigated

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane–Propane–Decane</td>
<td>PS–Benzene</td>
<td>CO$_2$–Propane–Pentane–Octane</td>
<td>Polystyrene–Carbon Tetrachloride–Chloroform</td>
<td>CO$_2$–Cyclohexane–polystyrene</td>
</tr>
</tbody>
</table>
5. Conclusions

The simplified PHSCT model has been applied to pure polymers and to mixtures of polymers, solvents and supercritical fluids with the aim of investigating its correlating and predictive capabilities in the description of the complex phase behavior of such systems.

The results obtained show clearly that the model is able to describe such systems in a qualitative and semi-quantitative way.

Specifically, for pure polymers good calculations can be made, which lie within the experimental uncertainty of the data.

For binary systems vapor–liquid equilibrium calculations results are also good as far as the correlation of mixture: the VLE zone, in the lower part of the diagram, the liquid zone, which includes the polystyrene–cyclohexane binary pair, the LLE zone, in the upper part of the diagram, and the VLLE zone, in the centre of the triangle. A mixture of composition \(\mathbf{z}\) included in this zone, splits into one vapor phase, practically solvent free, and two liquid phases, one solvent-rich and a second one, which contains more than 40% by weight of polymer. This phase separation appears under temperature and pressure conditions at which the polystyrene–cyclohexane system forms only one stable liquid phase and is allowed by the introduction of less than 25% weight of \(CO_2\) in the mixture.

Finally, Fig. 7 investigates, in a predictive framework, the effect of pressure on this phase separation. These results cannot be compared to experimental data, that are unavailable for the considered conditions. Decreasing pressure facilitates the phase separation, because the differences in the free volume of the mixture’s components, that are responsible for the high-temperature phase separation, are enhanced. Therefore, following the model prediction, the process could be carried out under milder conditions.
experimental data is concerned. For polymer–solvent systems also the value of the binary interaction parameter is quite stable and not depending on temperature. This is not the case for CO$_2$–solvent systems, where a correction to the model is necessary. As far as the liquid–liquid and the vapor–liquid–liquid calculations are concerned, good predictive capabilities of the model can be found for CO$_2$–solvent systems. The model can also reproduce both the upper critical solution temperature and the lower critical solution temperature behavior of the polymer–solvent systems.

For ternary and multicomponent systems vapor–liquid and liquid–liquid predictive calculations agree fairly well with experiment.

Multiple phase multicomponent system behavior for the only system available for investigation gave excellent results and the model proved to be an interesting tool for the prediction of phase behavior in different conditions.

Acknowledgements

The authors wish to thank J.M. Prausnitz for his helpful suggestions and the Ministero dell’Università e della Ricerca Scientifica (MURST — Roma) for the financial support.

References

